• Title/Summary/Keyword: visuospatial and verbal tasks

Search Result 5, Processing Time 0.023 seconds

Cerebrum Lateralization by Area based on the Intensity of BOLD Signal during Cognitive Performance (인지 기능 수행 시 BOLD 신호 크기에 기반 한 영역별 대뇌 편측화)

  • Chung Soon Cheol;Shon Jin Hun;Kim Ik Hyeon;Lee Soo Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.183-192
    • /
    • 2005
  • This study compared cerebral lateralization index based on the area of neural activation with that based on the intensity of neural activation. For this purpose, 8 right-handed male college students (the mean age - 23.5 years) and 10 right-handed male college students (the mean age - 25.1 years) participated respectively in researches on visuospatial and verbal task brain function. Functional brain images were taken from 3T MRI using the single-shot EPI method. The result of measuring cerebral lateralization index based on the area of neural activation suggested that the right hemisphere is dominant in visuospatial tasks and the left one is in verbal tasks. However, the dominance is not sufficient to locate the exact part of the brain for these tasks. When cerebral lateralization index was computed based on the intensity of neural activation, it was derived that the area of cerebral lateralization closely related to visuospatial tasks is the superior parietal lobe, and the area of cerebral lateralization closely related to verbal tasks is the inferior and middle frontal lobes. Thus, cerebral lateralization index by area based on the intensity of neural activation as proposed by this study can determine the dominance of the cerebrum by area, so is helpful for accurate and quantitative determination of cerebral lateralization.

An fMRI Study of Cognitive Function during Hyperoxia

  • Chung Soon-Cheol;Kim Ik-Hyeon;Tack Gye-Rae;Lee Soo Yeol;Sohn Jin-Hun
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. Seventeen college students (right­handed, average age of 24.3) were selected as subjects for this study. An oxygen supply equipment that provides 21% and 30% oxygen at a constant rate of 8L/min was developed. In order to measure the performance level of visuospatial and verbal cognition, two psychological tests were developed. The experiment consisted of two runs, one for cognition task with normal air (21% oxygen) and the other for cognition task with hyperoxic air (30% oxygen). Visuospatial and verbal tasks were presented while brain images were scanned by a 3T fMRI system using the single-shot EPI method. The results showed that there was an improvement in performance and also increased activation in several brain areas in the higher oxygen condition. These results suggest that while performing cognitive tasks, high concentrations of oxygen administration make oxygen administration sufficient, thus making neural network activate more, and the ability to perform cognitive tasks increase.

An fMRI study on the cerebellar lateralization during visuospatial and verbal tasks (공간 및 언어 과제 수행 시 소뇌의 편측화에 관한 뇌 기능 연구)

  • Chung, Soon-Cheol;Sohn, Jin-Hun;Choi, Mi-Hyun;Lee, Su-Jeong;Yang, Jae-Woong;Lee, Beob-Yi
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.425-432
    • /
    • 2009
  • The purposes of the study were to examine cerebellar areas and lateralization responsible for visuospatial and verbal tasks using functional Magnetic Resonance Imaging(fMRI). Eight healthy male college students($21.5\;{\pm}\;2.3$ years) and eight male college students($23.3\;{\pm}\;0.5$ years) participated in this fMRI study of visuospatial and verbal tasks, respectively. Functional brain images were taken from 3T MRI using the single-shot EPI method. All functional images were aligned with anatomical images using affine transformation routines built into SPM99. The experiment consisted of four blocks. Each block included a control task(1 minute) and a cognitive task(1 minute). A run was 8 minutes long. Using the subtraction procedure, activated areas in the cerebellum during the visuospatial and verbal tasks were color-coded by t-score. A cerebellar lateralization index was calculated for both cognition tasks using number of activated voxels. The activated cerebellar regions during the both cognition tasks of this study agree with previous results. Since the number of activated voxels of the left and right cerebellar hemisphere was almost same, there was no cerebellar lateralization for both cognition tasks.

  • PDF

Cognitive Profile of Children with Williams Syndrome: Comparison with Children with Prader-Willi Syndrome and Down Syndrome

  • Yim, Shin-Young;Cho, Kye-Hee;Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • Purpose: The objectives were to examine following 2 questions related to cognitive profile for the children with Williams syndrome (WS); 1) Is there a significant advantage for verbal IQ over performance IQ in WS?; 2) Is there selective impairment in visuospatial ability in the children with WS? Materials and Methods: Five children with WS with the age of $90.86{\pm}20.73$ months were compared with 12 children with Prader-Willi syndrome (PWS) or Down syndrome (DS) with comparable age and IQ. Results: All 5 children with WS showed intellectual disability whose mean scaled scores were $15.71{\pm}9.27$ in verbal subtests and $14.29{\pm}7.50$ in performance subtests, which did not show significant difference. There was no significant difference in the total sum of scaled scores of verbal subtests among WS, PWS and DS. There was no selective impairment in subtests which represented visuospatial tasks for the children with WS. However, the scaled score of object assembly was significantly lower in WS ($2.29{\pm}0.95$) compared to that of PWS ($4.75{\pm}2.77$; P <0.05). Conclusion: The general notion that the children with WS would be relatively strong in verbal function when compared with their overall cognitive function was not observed in this study. The verbal function of the children with WS was not better when compared to the children with DS or PWS. There was no selective impairment of visuospatial function in the children with WS at this age. However, the visuospatial function was significantly low in the children with WS only when compared to the children with PWS.

Comparison of Working Memory Among the Subtypes of Child and Adolescent Attention-Deficit/Hyperactivity Disorder (아동.청소년주의력결핍/과잉행동장애 하위유형에 따른 작업기억의 비교)

  • Lee, Soyoung Irene;Lim, Eun-Ji;Park, Joon-Ho;Jung, Han-Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.17 no.2
    • /
    • pp.70-78
    • /
    • 2010
  • Objectives : This study investigated the differences of working memory among the subtypes of ADHD. Methods : Eighty-one children and adolescents with ADHD and thirty normal controls were recruited. Children with any cognitive disorders and low intelligence were excluded. In order to evaluate the verbal and visuospatial working memory, Digit span and Finger windows tasks were measured, respectively. Performances on these measures between children with ADHD and controls were compared. Further, performances among the groups of ADHD predominantly inattentive(ADHD-IA)(n=40), predominantly hyperactive-impulsive(ADHD-HI)(n= 10), and combined type(ADHD-C)(n=31), were compared. Results : Scores of Finger windows forward task were lower in the ADHD group as compared to the control group, whereas, the Digit span forward showed no difference. Both scores of Digit span backward and Finger windows backward task were lower in the ADHD group than the controls. Children with ADHD-IA performed poorer than children with ADHD-C on the Finger windows backward task. Conclusion : The results of this study showed that children with ADHD have deficits in spatial short-term memory and verbal and visuospatial working memory when compared to normal children. The deficits were evident in children with ADHD-IA subtype and in particular, performance on the visuospatial working memory task in this group was poorer than the ADHD-C group.