• Title/Summary/Keyword: visualization material

Search Result 188, Processing Time 0.025 seconds

Users' Design Process in Immersive Environments (몰입형 환경에서의 사용자 디자인 과정에 관한 연구)

  • Cho, Myung Eun;Kim, MI Jeong
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.2
    • /
    • pp.64-71
    • /
    • 2017
  • The purpose of this study is to investigate the potential of immersive environments in the design domain by analyzing students' design process in immersive environments from cognitive and experiential aspects. To do this, we reviewed major concepts and theories such as users' immersion, participation, presence, and awareness and developed a comprehensive conceptual framework of immersive shared environments. In three different visualization systems of HIVE, teams consisting two students were assigned to design tasks and the design process was analyzed by a customized framework. The characteristics of the immersive environment related to the performance of the design task were different from those of the previous studies. The perception of the relationship between the spaces is very important, and the perception of the surrounding objects is interested in the shape or the material such as whether the object is flat or inclined. Also, it is found that the multi-technology of immersive environments is very useful for creative collaboration. In the future, a more comprehensive analysis of the effects on design decisions in a more diverse visual interface condition and the effects on more diverse design areas should be added.

Flow Visualization in Realistic Arterial Bypass Graft Model

  • Singh, Megha;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Background: Coronary atherosclerosis artery disease is the leading cause of morbidity and mortality. Coronary artery bypass grafting (CABG) which utilizes the saphenous vein graft, has helped in alleviating the suffering of these patients. Newer techniques are being developed to improve upon the techniques. Still there is significant number of failures, leading to re-grafting or re-vascularization. Some studies have helped in identifying the high and low shear stress regions. Further studies based on their realistic models are required. Material, methods and results: we developed the realistic model of fully blocked right coronary with bypass graft placed at angle of $5^0$ with curvature similar to that of artery. Pulsatile flow of birefringent solution through this model by polarized light was visualized. The images of complete flow field in the model were recorded and analyzed. Regions of high flow disturbances which are prone to further changes are identified. Existence of recirculation in the blocked coronary may initiate new blood-tissue interactions deleterious to bypass graft. Conclusion: Our study shows that by selecting the procedure to place bypass graft at minimum angle with curvature similar to that of artery and smooth sutures may improve the life span of the graft. This study also identified that coronary blocked regions contributing by recirculation flow at the proximal and distal regions of bypass which may require further studies.

  • PDF

A Visualization Study on the Effects of Ignition Systems on the Flame Propagation in a Constant Volume Combustion Chamber (가시화를 이용한 정적연소기에서 점화장치가 화염전파에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1652-1661
    • /
    • 2000
  • A visualization study using the schlieren method is adopted in an optically-accessible, cylindrical constant volume combustion chamber to identify the mechanism of ignition energy and ignition system interaction in spark ignited, lean gasoline-air mixture. In order to research the effects of ignition system on flame propagation, two kinds of ignition system are designed, and several kinds of spark plugs are tested and evaluated. To control the discharge energy, the dwell time is varied. The initial flame development is quantified in terms of 2-D images which provides information about the projected flame area and development velocity as a function of ignition system and discharge energy. The results show that high ignition energy and extended spark plug gap can shorten the combustion duration in lean mixtures. The material, diameter and configuration of electrodes the flame development by changing the transfer efficiency from electrical energy to chemical energy and discharge energy. However these factors do not affect of flame development as much a ignition energy or extended gap does.

Simultaneous Measurement of Size and Velocity of Microbubbles inside Opaque Tube Using X-ray PTV Technique (X-ray PTV 기법을 이용한 불투명 튜브 내부의 미세기포의 크기 및 속도 동시 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 2006
  • The microbubbles were used in various fields, such as turbulent control, drag reduction, material science and life science. The X-ray PTV using X-ray micro-imaging technique was employed to mea-sure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}$=2.7mm) were tested. Due to the different refractive indices of water and air, phase contrast X-ray images clearly show the exact size and shape of over-lapped microbubbles. In all of the working fluids tested (deionized water, tap water, 0.01 and 0.10M NaCl solutions), the measured terminal velocity of the microbubbles rising through the solution was proportional to the square of the bubble diameter. The rising velocity was increased with increasing mole concentration. The microbubble can be useful as contrast agent or tracer in life science and biology. The X-ray PTV technique should be able to extract useful information on the behavior of various bio/microscale fluid flows that are not amenable to analysis using conventional methods.

  • PDF

Fabrication and Performance Evaluation of Thin Film RTD Temperature Sensor Array on a Curved Glass Surface (곡면 유리 표면 위에서 박막 측온저항체 온도센서 어레이 제작 및 성능 평가)

  • Ahn, Chul-Hee;Kim, Hyoung-Hoon;Park, Sang-Hu;Son, Chang-Min;Go, Jeung-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.34-39
    • /
    • 2011
  • This paper presents a novel direct fabrication method of the thin metal film RTD temperature sensor array on an arbitrary curved surface by using MEMS technology to measure a distributed temperature field up to $300^{\circ}C$ without disturbing a fluid flow. In order to overcome the difficulty in the three dimensional photography of sensor patterning, the UV pre-irradiated photosensitive dry film resist technology has been developed newly. This method was applied to the fabrication of the temperature sensor array on a glass tube, which is arranged parallel and transverse to a main flow. Gold was used as a temperature sensing material. The resistance change was measured in a thermally controlled oven by increasing the environmental temperature. The linear increase in resistance change and a constant slope were obtained. Also, the sensitivity of each RTD temperature sensor was evaluated.

Flow Visualization in Porous Cylinder with Partial Slots (부분 슬롯을 가진 다공성 실린더의 내부 유동 가시화)

  • Son, Min;Kim, Dohun;Koo, Jaye;Chang, Hongbeen;Kang, Moonjung
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.1-5
    • /
    • 2014
  • An inner flow of a porous cylinder with partial slots was visualized to study fluidic phenomena in a solid rocket motor. A high-pressure chamber and an air supply system for high flow rate were used. In order to visualize the inner flow, the smoke generator with a cam-driven pump and heaters and high speed camera were adopted. The results of the cylinder type and the partial slot type were compared. As a result, the injected smoke flow in the partial slot type had circumferential fluctuations unlike the cylinder type. It was found that the circumferential flow induced from the partial slots could be the cause of combustion instability and roll torque.

Study on the Vortex Shedding Phenomena Near Free Surface (자유수면 근처에서의 보오텍스 방출 현상에 관한 고찰)

  • Seok-Won Hong;Pan-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.118-131
    • /
    • 1991
  • The effects of free surface on vortex shedding phenomena around a bluff body were studied by both numerical simulation and flow visualization experiments. A vortex method, which approximates the vorticity field as the sum of discrete vortices; was used for the numerical simulation. Flow visualization experiments were performed in the KRISO cavitation tunnel. Hydrogen bubble was used as illumination material. Free surface elevation was also measured during experiments. The hydrodynamic drag and lift were predicted by numerical simulation. The predicted period of vortex shedding was compared with the results of experiments.

  • PDF

Experimental Study on Structural and Functional Characteristics of Surface-Modified Porous Membrane (다공성 멤브레인의 표면 개질에 따른 구조 및 성능 특성에 대한 실험 연구)

  • Lee, Sang Hyuk;Kim, Kiwoong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • With the advances in recent nanotechnology, mass transport phenomena have been receiving large attention both in academic researches and industrial applications. Nonetheless, it is not clearly determined which parameters are dominant at nanoscale mass transport. Especially, membrane is a kind of technology that use a selective separation to secure fresh water. The development of great separation membrane and membrane-based separation system is an important way to solve existing water resource problems. In this study, glass fiber-based membranes which are treated by graphene oxide (GO), poly-styrene sulfonate (GOP) and sodium dodecyl sulfate (GPS) were fabricated. Mass transport parameters were investigated in terms of material-specific and structure-specific dominance. The 3D structural information of GO, GOP, and GPS was obtained by using synchrotron X-ray nano tomography. In addition, electrostatic characteristic and water absorption rate of the membranes were investigated. As a result, we calculated internal structural information using Tomadakis-Sotrichos model, and we found that manipulation of surface characteristics can improve spacer arm effect, which means enhancement of water permeability by control length of ligand and surface charge functionality of the membrane.

Comparison of Polymer Electrolyte Membrane Fuel Cell performance obtained by 1D and CFD simulations (1D와 CFD(Computational fluid dynamic) 시뮬레이션을 통한 PEMFC(Polymer Electrolyte Membrane Fuel Cell) 성능 비교)

  • Wonwoo Jeon;Sehyeon An;Jaewan Yang;Jiwon Lee;Hyunbin jo;Eunseop Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • The Polymer electrolyte membrane fuel cell (PEMFC) operates at ambient temperature as a low-temperature fuel cell. During its operation, voltage losses arise due to factors such as operating conditions and material properties, effecting its performance. Computational simulations of fuel cells can be categorized into 1D simulation and CFD, chosen based on their specific application purposes. In this study, we carried out an analysis validation using 1D geometry and compared its performance with the results from 2D geometry analysis. CFD allows for the representation of pressure, velocity distribution, and fuel mass fraction according to the geometry, enabling the analysis of current density. However, the 1D simulation, simplifying governing equations to reduce time cost, failed to accurately account for fuel distribution and changes in fuel concentration due to fuel cell operations. As a result, it showed unrealistic results in the cell voltage region dominated by concentration loss compared to CFD.

Implementation of the route Visualize of Ship in 3D CAD (3D CAD에서 선박의 Cable 경로 가시화 구현)

  • Kim, Hyeon-Jae;Kim, Bong-Gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.259-261
    • /
    • 2016
  • Cable is very essential material for ship operation as connecting element for whole electrical facilities of ship. The material cost and installation man-hour increment caused by re-installation is unavoidable if cable route has some problem. The purpose of this study is to suggest methods to implement the cable visualization functionality for verifying whether cable route is accurate or not in design phase. This functionality is conducted by representing color of 3D model for strong visibility by refer to textual cable routing information. The electrical engineer can provide cable route information more accurate and on time for cable installation department. As a result, the material cost and installation man-hour reduce due to decreasing ratio of re-installation.

  • PDF