• Title/Summary/Keyword: visual tracking algorithm

Search Result 131, Processing Time 0.028 seconds

A algorithm on robot tracking about complex curve with visual sensor (시각센서를 이용한 로보트의 복잡한 곡선추적에 관한 알고리즘)

  • 권태상;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.109-114
    • /
    • 1987
  • In this thesis, we work on the curve recognition with real time processing and the Robot tracking method on recognized curve. Image information of segment curve is supplied to computer to run to a Robot so that it is a feedback system. Image coordinate frame to world coordinate transformation represents in this paper and curve matching algorithm subscribes by two method, first transformation matching algorithm, second image coordinate matching algorithm. Also Robot running time to computer image processing time relationships finally includes.

  • PDF

A Task Scheduling Strategy in a Multi-core Processor for Visual Object Tracking Systems (시각물체 추적 시스템을 위한 멀티코어 프로세서 기반 태스크 스케줄링 방법)

  • Lee, Minchae;Jang, Chulhoon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.127-136
    • /
    • 2016
  • The camera based object detection systems should satisfy the recognition performance as well as real-time constraints. Particularly, in safety-critical systems such as Autonomous Emergency Braking (AEB), the real-time constraints significantly affects the system performance. Recently, multi-core processors and system-on-chip technologies are widely used to accelerate the object detection algorithm by distributing computational loads. However, due to the advanced hardware, the complexity of system architecture is increased even though additional hardwares improve the real-time performance. The increased complexity also cause difficulty in migration of existing algorithms and development of new algorithms. In this paper, to improve real-time performance and design complexity, a task scheduling strategy is proposed for visual object tracking systems. The real-time performance of the vision algorithm is increased by applying pipelining to task scheduling in a multi-core processor. Finally, the proposed task scheduling algorithm is applied to crosswalk detection and tracking system to prove the effectiveness of the proposed strategy.

Multiple Cues Based Particle Filter for Robust Tracking (다중 특징 기반 입자필터를 이용한 강건한 영상객체 추적)

  • Hossain, Kabir;Lee, Chi-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.552-555
    • /
    • 2012
  • The main goal of this paper is to develop a robust visual tracking algorithm with particle filtering. Visual Tracking with particle filter technique is not easy task due to cluttered environment, illumination changes. To deal with these problems, we develop an efficient observation model for target tracking with particle filter. We develop a robust phase correlation combined with motion information based observation model for particle filter framework. Phase correlation provides straight-forward estimation of rigid translational motion between two images, which is based on the well-known Fourier shift property. Phase correlation has the advantage that it is not affected by any intensity or contrast differences between two images. On the other hand, motion cue is also very well known technique and widely used due to its simplicity. Therefore, we apply the phase correlation integrated with motion information in particle filter framework for robust tracking. In experimental results, we show that tracking with multiple cues based model provides more reliable performance than single cue.

Visual Target Tracking and Relative Navigation for Unmanned Aerial Vehicles in a GPS-Denied Environment

  • Kim, Youngjoo;Jung, Wooyoung;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.258-266
    • /
    • 2014
  • We present a system for the real-time visual relative navigation of a fixed-wing unmanned aerial vehicle in a GPS-denied environment. An extended Kalman filter is used to construct a vision-aided navigation system by fusing the image processing results with barometer and inertial sensor measurements. Using a mean-shift object tracking algorithm, an onboard vision system provides pixel measurements to the navigation filter. The filter is slightly modified to deal with delayed measurements from the vision system. The image processing algorithm and the navigation filter are verified by flight tests. The results show that the proposed aerial system is able to maintain circling around a target without using GPS data.

Robust Visual Tracking using Search Area Estimation and Multi-channel Local Edge Pattern

  • Kim, Eun-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.47-54
    • /
    • 2017
  • Recently, correlation filter based trackers have shown excellent tracking performance and computational efficiency. In order to enhance tracking performance in the correlation filter based tracker, search area which is image patch for finding target must include target. In this paper, two methods to discriminatively represent target in the search area are proposed. Firstly, search area location is estimated using pyramidal Lucas-Kanade algorithm. By estimating search area location before filtering, fast motion target can be included in the search area. Secondly, we investigate multi-channel Local Edge Pattern(LEP) which is insensitive to illumination and noise variation. Qualitative and quantitative experiments are performed with eight dataset, which includes ground truth. In comparison with method without search area estimation, our approach retain tracking for the fast motion target. Additionally, the proposed multi-channel LEP improves discriminative performance compare to existing features.

Real-Time Seam Tracking System Using a Visual Device with Vertical Projection of Laser Beam (레이저빔 수직투사 구조의 시각장치를 이용한 실시간 용접선추적 시스템)

  • Kim, Jin-Dae;Lee, Jeh-Won;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.64-74
    • /
    • 2007
  • Because of the size and environment in the shipbuilding process, the portable type robot is required for the automatic seam tracking. For this reason, the structure of laser sensor should be considered in the initial design step and the coordinate transformation between welding robot and laser sensor, which is joint finder, must be identified exactly and the real time tracking algorithm based on these consideration could be developed. In this research, laser displacement sensor in which its structure is laser beam's vertical projection, is developed to recognize the location of weld joint. In practical applications, however, images of weld joints are often degraded because of the surface specularity or spatter. To overcome the problem, the constrained joint finding algorithm is proposed. In the approach of coordinate conversion rule for the visual feedback control among welding torch, robot body and laser sensor is applied by the same reference point method. In the real time seam tracking algorithms we propose constrained sampling method which uses look ahead distance. The RLS(Recursive Least Square) filter is applied to obtain the smooth tracking path from the sensitive edge data. From the experimental results, we could see the possibility that the developed laser sensor with proposed processing algorithm and real time seam tracking method can be used as a welding under the shipbuilding condition.

A novel visual tracking system with adaptive incremental extreme learning machine

  • Wang, Zhihui;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.451-465
    • /
    • 2017
  • This paper presents a novel discriminative visual tracking algorithm with an adaptive incremental extreme learning machine. The parameters for an adaptive incremental extreme learning machine are initialized at the first frame with a target that is manually assigned. At each frame, the training samples are collected and random Haar-like features are extracted. The proposed tracker updates the overall output weights for each frame, and the updated tracker is used to estimate the new location of the target in the next frame. The adaptive learning rate for the update of the overall output weights is estimated by using the confidence of the predicted target location at the current frame. Our experimental results indicate that the proposed tracker can manage various difficulties and can achieve better performance than other state-of-the-art trackers.

Multi-Cattle tracking with appearance and motion models in closed barns using deep learning

  • Han, Shujie;Fuentes, Alvaro;Yoon, Sook;Park, Jongbin;Park, Dong Sun
    • Smart Media Journal
    • /
    • v.11 no.8
    • /
    • pp.84-92
    • /
    • 2022
  • Precision livestock monitoring promises greater management efficiency for farmers and higher welfare standards for animals. Recent studies on video-based animal activity recognition and tracking have shown promising solutions for understanding animal behavior. To achieve that, surveillance cameras are installed diagonally above the barn in a typical cattle farm setup to monitor animals constantly. Under these circumstances, tracking individuals requires addressing challenges such as occlusion and visual appearance, which are the main reasons for track breakage and increased misidentification of animals. This paper presents a framework for multi-cattle tracking in closed barns with appearance and motion models. To overcome the above challenges, we modify the DeepSORT algorithm to achieve higher tracking accuracy by three contributions. First, we reduce the weight of appearance information. Second, we use an Ensemble Kalman Filter to predict the random motion information of cattle. Third, we propose a supplementary matching algorithm that compares the absolute cattle position in the barn to reassign lost tracks. The main idea of the matching algorithm assumes that the number of cattle is fixed in the barn, so the edge of the barn is where new trajectories are most likely to emerge. Experimental results are performed on our dataset collected on two cattle farms. Our algorithm achieves 70.37%, 77.39%, and 81.74% performance on HOTA, AssA, and IDF1, representing an improvement of 1.53%, 4.17%, and 0.96%, respectively, compared to the original method.

Target identification for visual tracking

  • Lee, Joon-Woong;Yun, Joo-Seop;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.145-148
    • /
    • 1996
  • In moving object tracking based on the visual sensory feedback, a prerequisite is to determine which feature or which object is to be tracked and then the feature or the object identification precedes the tracking. In this paper, we focus on the object identification not image feature identification. The target identification is realized by finding out corresponding line segments to the hypothesized model segments of the target. The key idea is the combination of the Mahalanobis distance with the geometrica relationship between model segments and extracted line segments. We demonstrate the robustness and feasibility of the proposed target identification algorithm by a moving vehicle identification and tracking in the video traffic surveillance system over images of a road scene.

  • PDF