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Abstract 
 

This paper presents a novel discriminative visual tracking algorithm with an adaptive 
incremental extreme learning machine. The parameters for an adaptive incremental extreme 
learning machine are initialized at the first frame with a target that is manually assigned. At 
each frame, the training samples are collected and random Haar-like features are extracted. 
The proposed tracker updates the overall output weights for each frame, and the updated 
tracker is used to estimate the new location of the target in the next frame. The adaptive 
learning rate for the update of the overall output weights is estimated by using the confidence 
of the predicted target location at the current frame. Our experimental results indicate that the 
proposed tracker can manage various difficulties and can achieve better performance than 
other state-of-the-art trackers. 
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1. Introduction 

Object tracking has received widespread attention due to its wide range of applications in 
various industries, including the fields of video surveillance, medical imaging systems, 
intelligent user interfaces, etc [1, 2]. Numerous tracking algorithms that are suitable for 
specific targets under certain circumstances have been proposed [3–9]. All of these tracking 
methods are effective when operating under the given assumptions of their design during 
experimental simulations. In the process of tracking, the target objects always undergo various 
kinds of challenges and problems, such as occlusion, illumination variation, camera 
movement, and image blur, and it is still difficult to manage these challenges effectively and in 
a timely manner. 
The online tracking algorithms must update their parameters to manage the aforementioned 
issues. Therefore, the strategy used to update the parameters is rather important for the online 
tracking stage. A visual tracking method with an online boosting feature selection has been 
used in Ref. [10]. Also, an IVT tracker can learn and incrementally update a low-dimensional 
eigenspace representation [11]. A TLD tracker explicitly decomposes the visual tracking task 
into three portions: tracking, learning, and detection [12]. In order to deal with the drifting 
problems, multiple instance learning has been adopted in the MIL tracker with random 
Haar-like features [13]. A locality sensitive histogram has been proposed and has used for 
visual tracking [14]. Most of the existing tracking algorithms use a fixed learning rate to 
update the parameters per frame. When the target object has a poor appearance, the parameter 
update may have a negative effect on the tracking results of the following frames. If the 
information of the target history is handled improperly, drifting problems are inevitable in 
these situations. 
An extreme learning machine (ELM) is a rather powerful and efficient machine learning 
algorithm [15-18]. An ELM algorithm has been extensively applied to many research 
problems that require regression or pattern classification. Various improved algorithms have 
been proposed during the past decade [19–23], including OS-ELM, which can deal with 
sequentially arriving data [24]. The sample blocks are trained individually, and the output 
weights are updated without performing any repetitive computation. However, the 
contributions of these training samples are equal during the estimation of the output weights. 
The proposed adaptive incremental extreme learning machine (AI-ELM) uses a confidence 
strategy to update its overall output weights at every frame. The confidence is used to assign a 
searching area to collect training samples and to calculate the learning rate that is used to 
update the weights of the AI-ELM. Instead of updating the parameters using a constant 
learning rate, the proposed AI-ELM tracker uses a variable learning rate. This variable 
learning rate depends on the confidence value of the estimated target at the current frame. 
When the confidence is lower than the given threshold, the parameter update is cancelled at 
that frame. In this way, the parameters are updated adaptively based on the state of the target 
appearances. 
The remainder of the paper is organized as follows. The proposed AI-ELM tracking system is 
described in Section 2. An experimental comparison of the proposed tracker against other 
state-of-the-art trackers is demonstrated in Section 3. Finally, the conclusions are drawn in 
Section 4. 
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2. The proposed tracking system 
The proposed visual tracking system (AI-ELM tracker) implements an adaptive, incremental 
strategy to update the parameters of the extreme learning machine. We first briefly introduce a 
system overview of the proposed AI-ELM tracker in Subsection 2.1. Then, we explain the 
collection strategy for the training samples, the principle of the AI-ELM algorithm, the object 
location estimation method, and the adaptive parameter update for the AI-ELM tracker in 
Subsections 2.2, 2.3, 2.4 and 2.5. 

 
Fig. 1. Basic flow diagram of the proposed AI-ELM tracker. The parameters of the AI-ELM tracker are 
initialized at the first frame, and are updated frame by frame using an adaptive learning rate. The red 

rectangles are positive training samples, and the green rectangles are negative training samples. 
 

2.1. System overview 
In the proposed tracking system, the tracking process is produced with the proposed 

AI-ELM tracker.  After the target object is initialized in the first frame, the target’s location on 
each frame is estimated in the searching region. On each frame, several target candidates are 
extracted from the searching region, and their confidences are calculated by the AI-ELM 
tracker. The target candidate with the best confidence is selected as the target’s location on this 
frame. Only targets with the confidence higher than a given threshold are used to update the 
parameters of AI-ELM tracker to estimate the new location on the next frame. 

As the basic flow diagram shows in Fig. 1, the target object position at frame  is 
estimated using the confidence values calculated by the AI-ELM tracker at frame , while the 
center and the size of the target is selected manually at the first frame. Some positive and 
negative training samples, with their given numbers, are collected around the target object. 
The parameters of the AI-ELM tracker are initialized at the starting frame along with the 
information of the collected training samples. In the following procession, the parameters of 
the proposed tracking system are updated using the latest collected training through an 
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adaptive learning rate per frame. The updated tracker is then used to estimate the location of 
the target in the search region around the current location at the next frame.  

The details of the proposed visual tracking system are detailed next. 

2.2. Collection of training samples 
For each frame, positive and negative training samples are collected around the target 

object to update the parameters of the AI-ELM tracker. At frame , some positive training 
samples  and some negative training samples  are collected 
from the corresponding regions  and 

, where  is the location function;  is the center of the 
target object at frame ;  and  are the given numbers for the positive and negative training 
samples; and  are region radii following the relation . The sizes of 
all of the training samples are the same as those of the target object. 

Then, random Haar-like features  [13, 25], where  is the 
amount of feature dimensions, are extracted from these training samples , and 
all the components of  are normalized. (For the first frame, all of the components are 
normalized into . For the following frames, these components are normalized based on 
the standardized scale of the first frame.) The corresponding outputs of the positive and the 
negative training samples are ones and zeros, and the extreme learning machine is trained 
using a regressive pattern. Compared with other image features, such as Histogram of 
Oriented Gradient (HOG), random Haar-like features is rather suitable for the tracker due to 
their relative simplicity and efficiency. Since the tracking algorithm is processed online, the 
features should be extracted fast enough to guarantee the efficiency of the tracking system, 
while keeping the high accuracy of tracking results. 

2.3. Principle of adaptive incremental extreme learning machine (AI-ELM) 
In a manner similar to that of the original ELM algorithm [15, 16], the hidden node 

parameters  of the AI-ELM are randomly selected before tracking, where 
 and  represents the number of hidden nodes. The ranges of the values for  

and  are  and , correspondingly. At frame , the hidden node output function of 
the th additive hidden node of the training sample  is 

 
                                        (1) 

 
According to the theory of an extreme learning machine and to the Moore-Penrose pseudo 

inverse [26], the optimal output weights  are estimated as 
 

                                     (2) 

 
where the hidden layer output matrix is 
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and  are the outputs of the positive and the negative training 
samples concatenated with  ones and  zeros. is the Moore-Penrose 
generalized inverse of the hidden layer output matrix  when  is nonsingular. Otherwise, 

 is estimated based on the method of singular value decomposition.  The output of the 
AI-ELM is 
 

                                       (3) 

 
where  is the th element of the overall output weights at frame , , which is updated 
with an adaptive learning rate . Compared with the original ELM algorithm, overall output 
weights of the proposed AI-ELM tracker contain the historical information and are updated 
only with high confidences, which are explained in subsection 2.5. The output value is used to 
estimate the position of the object at the next frame and to calculate its confidence value and 
learning rate. 

As mentioned above, the parameters of the proposed AI-ELM tracker are updated at each 
frame using the latest collected training samples. The updated tracker is then used to search for 
the target object in the next frame. Suppose that the overall output weights  are updated at 
frame . Then, the new target location at frame  can be searched exhaustively in the 
region  around the previous target center , where  is the 
positive search radius. The confidences for the candidates  are estimated by 
using Eq. (4). 

The maximum confidence value of all the candidates in the search region, , is used to 
calculate the learning rate to update the output weight  at frame  and defined as 

 
                                                    (4) 

 
And the location of the target object with this maximum confidence  where 

 is accepted as the new object location at frame . 

2.5. Parameter updating using adaptive learning rate 
For visual tracking, the parameter update is a rather important process that is used to 

manage the variation in the appearance of the targets. The strategy used to update the 
parameters affects the tracking capabilities of the specific tracking method used. Instead of 
performing a parameter update using a constant learning rate, we use an adaptive learning rate 
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to update the tracking system parameters during the online tracking process. 
For the AI-ELM tracker, the tracking system parameters are updated at each frame, and the 

learning rate is estimated adaptively. These parameters are initialized at the first frame, and for 
the  following frames, the learning rate of the parameter update is estimated according to the 
confidence value of the target, which is estimated by the tracker updated at the previous frame. 

 

 Fig. 2. Examples of the varied confidences. The confidence  at frame  is the maximum value of all 
candidates in the searching region, which is predicted by the proposed AI-ELM tracker. 

 
Under the assumption that there cannot be a large variation of the target object for 

consecutive frames, the confidence value of the selected target at each frame can therefore 
reflect appearance of the target. Large variations in this respect may be caused by different 
reasons, including occlusions and illumination changes. Such conditions always have a 
negative impact causing a poorly estimated confidence for the selected target. As shown in Fig. 
2, The confidence  of the target estimated at frame #31 is 0.86, which is a high value, since 
there are seldom any variations in the appearance of the pedestrian. When the pedestrian turns 
and walks in the opposite direction at frame #144, the confidence is reduced to a value of 0.64. 
At frame #189, the confidence is even worse and just reaches 0.1 since there is heavy 
occlusion. The confidence at frame #240 is 0.69 since there is light occlusion. Finally, the 
confidence is 0.78 at frame #252, which is higher than that of the other frames that have shape 
changes and occlusions. 

Drifting problems are inevitable after the parameter is updated for these frames. These 
training samples at these frames with interferences resulting from internal or external factors 
have worse performance than that of other unaffected frames. Moreover, the confidence value 
can briefly reflect the degree of these influences. Therefore, the learning rates of the proposed 
AI-ELM tracker are limited at these frames based on the variation of the confidence values. 

In this paper, the overall output weights  are updated using an adaptive learning rate  as 
follows 

 
                                       (5) 

 
where , the learning rate , and  is calculated by 
 

                                                   (6) 

 
where  are positive constant parameters,  is the threshold for , and the maximum 
confidence of all the candidates in the search region  at frame  estimated by the previous 
updated tracker at frame  is defined in subsection 2.4. Therefore, the learning rate is 
adjusted adaptively and steadily. Fig. 3 shows illustrates the relationship between the learning 
rate  and the estimated confidence . 
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Fig. 3. The relationship between the learning rate  and the confidence . 

 
When , the overall output weights  are not updated and are assigned to be . 

The learning rate  linearly increases by  in the region . When ,  is 
suppressed to a constant learning rate . From Eq. (5), we obtain the relation between the 
overall output weights  and all of the calculated output weights  by 

 

                                                (7) 

 
Therefore, the updated parameters contain sufficient information from these passed frames. 

The learning rate  is calculated as a tradeoff between the latest output weights  trained at 
frame  and the previous overall output weights , and the updated overall output weights 

 are used to search the new target location at the following frame . 
The pseudo-code for the proposed AI-ELM tracker is presented in Algorithm 1. 
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3. Experiments 
In this section, we compare the proposed AI-ELM tracker against five state-of-the-art trackers 
using seven publicly available video sequences that present various tracking challenges. For 
the comparison, we use the default parameters for the five trackers, L1APG [27], LOT [28], 
ORIA [29], IVT [11], and MIL [13]. Four test video sequences ( , , 

, and ) are from the MIL tracker [13] using a ‘png’ format. The other three 
video sequences ( , , and ) are from Tracker Benchmark 
v1.0 [30] using a ‘jpeg’ format. The other three video sequences (PolarBear, Sphere, and 
Surfing) are from VOT14 Benchmark [31] with `jpeg' format. All of the performance 
evaluations were carried out in MATLAB R2013a running on a PC with an Intel(R) Core(TM) 
i5-2500 CPU at 3.30 GHz and 16 GB RAM. In order to ensure consistency in the random 
number generation, we reset the random number generator in MATLAB to its initial state. The 
parameter settings are presented in Subsection 3.1, and the detailed results of the comparison 
are discussed in Subsections 3.2 and 3.3. 

3.1. Parameter settings 
The region radii   and   are selected based on the sizes of tracked objects and their 

traveling speeds. The searching radius  should be selected based on traveling speeds of the 
tracked targets.  When the target objects are larger, the region radius   should be set to be 
larger than the assigned value. Furthermore, when the traveling speeds are faster than the 
tested samples, their region radii   and   should be set to be larger than the assigned values. 
Otherwise, the targets cannot be followed when the targets leave the searching regions. In our 
experiments, the region radii of the training sample collection are set to be 

, respectively, for the given video sequences. All of the samples 
in the positive training sample region  are collected with number , and a randomly 
selected  negative training samples from region  at frame . The numbers of 
positive and negative training samples are selected based on the overall performances of the 
AI-ELM tracker, and the numbers of training samples can be set to be larger to enhance the 
robustness of the tracking accuracies. The dimension of the extracted random Haar-like 
features is 150, and the number of hidden nodes of the extreme learning machine are 200. The 
dimension of the extracted features was investigated in the region of [100, 200] with step 10 
and the number of hidden nodes is selected in the region of [100, 300] with step 20, based on 
their performances of the experiments. The positive constant for the learning rate  is set to 

, and the threshold  is set to 0.2. The parameters   and   are used to 
control the learning rate ,  is the threshold for the estimated confidence . When the 
confidence   is lower than the threshold  , the situation of the tracked target is not good 
enough. In these cases, the targets are always suffer with heavy occlusions or deformations. 
Therefore, it is desirable not to update the parameters of AI-ELM tracker at these frames. 

3.2. Quantitative analysis 
In order to demonstrate the superiority of the proposed AI-ELM tracker, we compared the 

failure rates, the average frame tracking speeds, and the center location errors of the proposed 
tracker against five other state-of-the-art trackers. A failure frame is indicated when the 
intersection of  and  is less than half of their union, where  is the tracking bounding 
box and  is the ground truth bounding box. The center location errors are evaluated in terms 
of the maximum value, mean value, and the standard deviation. 
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A comparison of the failure rate (FR) and average frame per second (FPS) are presented in 
Table 1. The failure rates of the proposed AI-ELM tracker are lower than 30% on all seven 
testing video sequences, and even lower than 10% on four of these. For the other trackers, the 
failure rates are all higher than 20%, except only for the LOT tracker on  and 

 which has a good result with failure rates of 3.9% and 4.5%. Compared to the other 
five trackers, the proposed AI-ELM tracker has the lowest failure rates on all of the testing 
sequences. 

The average FPS of the proposed AI-ELM tracker reaches 28, which is faster than that of 
the other five trackers and is adequate enough to deal with the online tracking applications. 
The training time for the MIL tracker at each frame is linearly proportional to the dimension of 
the extracted random Haar-like features. However, the feature dimensions have little influence 
on the computing time of the output weights  at frame . Since the extracting time of the 
random Haar-like features is rather short, the tracking time of the proposed AI-ELM tracker is 
increasingly slow as the feature dimension rises. 

 
Table 1. The failure rate (FR) (%) and the average frame per second (FPS) comparison of the 

proposed AI-ELM tracker and other five state-of-the-art trackers. 

 
1Red fonts indicate the best performance, while blue fonts indicate the second best results. 

 
Tables 2 and 3 show a comparison of the center location errors of the proposed AI-ELM 

tracker and of the other five state-of-the-art trackers. As shown in Table 3, the MIL tracker has 
good performances on the sequence  and the last four sequences, and is not good 
enough on the other sequences. The IVT tracker works well only on the sequence . 
Although the center location error of the IVT tracker is quite small on the sequence 

, the size of the tracking rectangle of the IVT is also decreased to be quite small. 
Based on the definition of failure frame at the beginning of Section 3.2, if the size of the 
tracking rectangle is much smaller than the target’s size, the tracking result is regarded to be 
failed and not acceptable. Similarly to the MIL and IVT trackers, the LiAPG, LOT and ORIA 
trackers work well only on few sequences, which has been shown in Tables 2 and 3. 

For the proposed AI-ELM tracker, the mean values are all lower than 15, and the standard 
deviations are all lower than 12. For the video sequences , , , and 

, the AI-ELM tracker has the best overall performances when considering all 
six trackers in terms of the maximum value, the mean value, and the standard deviation. For 
the other six testing sequences, the proposed AI-ELM tracker has comparable performances to 
that of the best tracking results from the other five trackers. Therefore, we can conclude that 
our tracker outperforms the other five trackers when using these testing video sequences. 
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Table 2. Center location error (in pixels) comparison of the proposed AI-ELM tracker and the other 
five state-of-the-art trackers (1). 

   
 

Table 3. Center location error (in pixels) comparison of the proposed AI- ELM tracker and the other 
five state-of-the-art trackers (2). 

   
 

3.3. Qualitative analysis 
The screenshots of the proposed AI-ELM tracker and of the other five state-of-the-art 

trackers with these seven test video sequences are shown in Fig. 4, Fig. 5, and Fig. 6. The 
tracking results of all of the trackers are highlighted with rectangles of different colors and 
different line styles. For all of the screenshots of the seven test video sequences, the AI-ELM 
tracker presents rather accurate tracking results without serious drifting problems. The 
AI-ELM tracker has better processing capacity on these testing sequences when compared to 
the other five trackers. 

For the  and  sequences, the target objects suffer from the influence of a 
texture that is similar to the local background. Moreover, the scale of the targets varied during 
the video sequences. For the  sequence, the AI-ELM tracker successfully tracks the 
target in all five screenshots. The MIL tracker works well at frame #47 and #97, and suffers 
from heavy drifting problems. The other four trackers are seriously impacted by the 
background. For the  sequence, the AI-ELM tracker, the MIL tracker, the LOT 
tracker, and the L1APG tracker can follow the target in the majority of the situations. However, 
the rectangles of the latter two trackers have different degrees of offsets, and the  IVT and 
ORIA trackers even lose the target at frame #390 and #419. 
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For the , , , and  sequences, the sequences 
are comprised of rotations, scale variations, and heavy occlusion. The LOT and ORIA trackers 
have terrible performance on the  and  sequences and suffer from serious 
scale problems. The IVT tracker always loses the targets in all of these four sequences. As 
Shown in Fig. 4, the IVT tracker has small location error on the sequence  
(#199, #245 and #395), which seems that the tracking accuracy is acceptable. However, the 
tracking rectangle is changed to be quite small than the object, the tracking result is regarded 
as failure for this case. The L1APG tracker can follow the targets at the beginning, but 
becomes ineffective later. The MIL tracker can basically track the targets and with light 
drifting issues, and the proposed AI-ELM works much better than all these five trackers on 
these four sequences. 

The basketball player that is tracked in the  sequence is easily confused with 
other players, even with the same uniform. The proposed AI-ELM tracker can deal with these 
challenges effectively and achieves better performance, compared to the other five trackers for 
these test video sequences. At the frames #585 and #720, the other five trackers lose the targets 
with rather large center location errors, and the  AI-ELM tracker achieves better performances 
than the other five trackers in this experiment. 

 

 
(a)  (#47, #97, #173, #205, #329) 

 
(b)  (#63, #128, #199, #245, #395) 

 
(c)  (#58, #144, #196, #251, #334) 

 
(d)  (#89, #164, #202, #390, #419) 

Fig. 4. Screenshots of tracking results (1). The video sequences are Cliffbar, DavidIndoor, Tiger2, 
Twinnings, from top to bottom. The rectangles of tracking results are best viewed in color and line style. 
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(a)  (#46, #191, #450, #585, #720) 

 
(b)  (#27, #86, #119, #190, #243) 

 
(c)  (#59, #194, #313, #586, #725) 

Fig. 5. Screenshots of tracking results (2). The video sequences are Basketball, DavidOutdoor, and 
FaceOcc2, from top to bottom. The rectangles of tracking results are best viewed in color and line style. 
 

 
(a) PolarBear (#45; #84; #139; #217; #268) 

 
(b) Sphere (#15; #78; #105; #139; #190) 

 
(c) Surfing (#55; #110; #150; #189; #231) 

Fig. 6. Screenshots of tracking results (3). The video sequences are PolarBear, Sphere, and Surfing, 
from top to bottom. The rectangles of tracking results are best viewed in color and line style. 

 
For sequence PolarBear, Sphere, and Surfing, the proposed AI-ELM tracker always has 

the second best performances. The L1APG, LOT, and MIL trackers have rather perfect 
performances on one or two video sequences. However, these three trackers cannot follow the 
targets well on other testing sequences. In other words, there performances are not robust 
enough on all of the testing sequences. 
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For some sequences, such as Tiger2 and FaceOcc2, the proposed AI-ELM tracker has 
better performances than other trackers. When the tracked target is occluded, the estimated 
confidence   always has low values. Therefore, the parameters of the AI-ELM tracker are 
not updated for these cases, which are controlled by the learning rate in Eq. (6). The AI-ELM 
tracker can avoid the undesirable updates of its parameters, and the target can be followed by 
the tracker when the target clearly appears again. Therefore, the proposed AI-ELM tracker 
achieves better performances than the other five trackers in our experiments. 

4. Conclusion and future work 
In this paper, we have introduced a novel visual tracking algorithm that uses an adaptive, 
incremental extreme learning machine. For the online tracking process, some positive and 
some negative training samples were collected per frame, and random Haar-like features of 
these training samples are extracted and normalized to preform the tracking system parameter 
update. The adaptive, incremental extreme learning machine updates the overall output 
weights for each frame using an adaptive learning rate, and the overall output weights contain 
the information from the previous frames, with the contribution of each frame determined by 
the estimated confidence of the target. 

Our experimental results indicate that the proposed visual tracking system is able to manage 
challenges, such as occlusion and variations in the appearance. When compared to five other 
state-of-the-art algorithms, the proposed tracking system shows better performance on the test 
video sequences. 

There are several interesting avenues for future work. First, a higher power training sample 
collection and feature extracting methods can be adopted to improve the effect and the 
efficiency of the tracking system. Here we have used a heuristic strategy to define the learning 
rate, and more rational and robust strategies can be added to this tracking system to enhance 
the tracking performance. Finally, the adaptive incremental extreme learning machine can be 
implemented for use applications outside of online data processing for visual tracking.  

References 
[1] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Computing Surveys, vol. 38, 

no. 4, 2006. Article (CrossRef Link) 
[2] H. Yang, L. Shao, F. Zheng, L. Wang, and Z. Song, “Recent advances and trends in visual 

tracking: A review,” Neurocomputing, vol. 74, no. 18, pp. 3823-3831, 2011. 
Article (CrossRef Link) 

[3] Y. Su, Q. Zhao, L. Zhao, and D. Gu, “Abrupt motion tracking using a visual saliency embedded 
particle filter,” Pattern Recognition, vol. 47, no. 5, pp. 1826-1834, 2014. Article (CrossRef Link) 

[4] C. H. Hsia, Y. J. Liou, and J. S. Chiang, “Directional Prediction CamShift algorithm based on 
Adaptive Search Pattern for moving object tracking,” Journal of Real-Time Image Processing, 
DOI 10.1007/s11554-013-0382-x, 2015. Article (CrossRef Link) 

[5] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line boosting for robust tracking,” 
Computer Vision-ECCV 2008, pp. 234-247: Springer, 2008. Article (CrossRef Link) 

[6] C. Migniot, and F. Ababsa, “Hybrid 3DC2D human tracking in a top view,” Journal of Real-Time 
Image Processing, Vol 11, issue 4, pp. 769-784, 2015. Article (CrossRef Link) 

[7] T. Bai, and Y. F. Li, “Robust visual tracking with structured sparse representation appearance 
model,” Pattern Recognition, vol. 45, no. 6, pp. 2390-2404, 2012. Article (CrossRef Link) 

[8] R. V. Babu, S. Suresh, and A. Makur, “Online adaptive radial basis function networks for robust 
object tracking,” Computer Vision and Image Understanding, vol. 114, no. 3, pp. 297-310, 2010. 

https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1016/j.neucom.2011.07.024
https://doi.org/10.1016/j.patcog.2013.11.028
https://doi.org/10.1007/s11554-013-0382-x
https://doi.org/10.1007/978-3-540-88682-2_19
https://doi.org/10.1007/s11554-014-0429-7
https://doi.org/10.1016/j.patcog.2011.12.004


464                                           Wang et al.: A novel visual tracking system with adaptive incremental extreme learning machine 

Article (CrossRef Link) 
[9] D. Wang, H. Lu, and M.-H. Yang, “Least Soft-thresold Squares Tracking,” in Proc. of the 2013 

IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, USA, 2013. 
Article (CrossRef Link) 

[10] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-line boosting,” British 
Machine Vision Conference, pp. 47-56, 2006. Article (CrossRef Link) 

[11] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for robust visual tracking,” 
International Journal of Computer Vision, vol. 77, no. 1-3, pp. 125-141, 2008. 
Article (CrossRef Link) 

[12] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1409-1422, 2010. 
Article (CrossRef Link) 

[13] B. Babenko, M.-H. Yang, and S. Belongie, “Robust object tracking with online multiple instance 
learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 
1619-1632, 2011. Article (CrossRef Link) 

[14]  S. He, Q. Yang, R. W. Lau, J. Wang, and M.-H. Yang, “Visual tracking via locality sensitive 
histograms,” in Proc. of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 2427-2434, Portland, Oregon, USA, 2013. Article (CrossRef Link) 

[15] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, “Extreme learning machine: Theory and applications,” 
Neurocomputing, vol. 70, pp. 489-501, 2006. Article (CrossRef Link) 

[16] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, “Extreme Learning Machine: A New Learning Scheme 
of Feedforward Neural Networks,” in Proc. of the International Joint Conference on Neural 
Networks (IJCNN 2004), Budapest,Hungary, pp. 25-29, Jul. 2004. Article (CrossRef Link) 

[17] G. Huang, G.-B. Huang, S. Song, K. You, “Trends in Extreme Learning Machines: A Review,” 
Neural Networks, vol. 61, pp. 32-48, 2015. Article (CrossRef Link) 

[18] L. L. C. Kasun, H. Zhou, G. -B. Huang, C. M. Vong, “Extreme Learning Machines,” IEEE 
Intelligent System, vol. 28, no. 6, pp. 30-59, 2013. Article (CrossRef Link) 

[19] G.-B. Huang, L. Chen, “Convex incremental extreme learning machine,” Neurocomputing, vol. 70, 
pp.3056-3062, 2007. Article (CrossRef Link) 

[20] M.-B. Li, G.-B. Huang, P. Saratchandran, N. Sundararajan, “Fully complex extreme learning 
machine,” Neurocomputing, vol. 68, pp. 306C314, 2005. Article (CrossRef Link) 

[21] Y. Lan, Y. C. Soh, and G.-B. Huang, “Two-stage extreme learning machine for regression,” 
Neurocomputing, vol. 73, pp. 3028C3038, 2010. Article (CrossRef Link) 

[22] G. Huang, S. Song, J. N. D. Gupta, C. Wu, “Semi-supervised and Unsupervised Extreme Learning 
Machines,” IEEE transactions on cybernetics, vol. 44, no. 12, 2405-2417, 2014. 
Article (CrossRef Link) 

[23] L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, “Representational Learning with Extreme 
Learning Machine for Big Data,” IEEE Intelligent System, vol. 28, no. 6, pp. 31-34, 2013. 
Article (CrossRef Link) 

[24] N. Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, “A fast and accurate online 
sequential learning algorithm for feedforward networks,” IEEE Transactions on Neural Networks, 
vol. 17, no. 6, pp. 1411-1423, 2006. Article (CrossRef Link) 

[25] R. Collins, Y. Liu, M. Leordeanu, “Online selection of discriminative tracking features,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1631-1643, 2005. 
Article (CrossRef Link) 

[26] C. R. Rao and S. K. Mitra, “Generalized inverse of matrices and its applications,” New York: Wiley, 
pp. 601-620, 1971. Article (CrossRef Link) 

[27] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust L1 tracker using accelerated proximal 
gradient approach,” in Proc. of the 2012 IEEE Conference on Computer Vision and Pattern 
Recognition, Providence, RI, USA, 2012. Article (CrossRef Link) 

[28] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan, “Locally orderless tracking,” in Proc. of the 2012 
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012. 
Article (CrossRef Link) 

https://doi.org/10.1016/j.cviu.2009.10.004
https://doi.org/10.1109/CVPR.2013.307
https://doi.org/10.5244/c.20.6
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/TPAMI.2010.226
https://doi.org/10.1109/CVPR.2013.314
https://doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1109/IJCNN.2004.1380068
https://doi.org/10.1016/j.neunet.2014.10.001
https://doi.org/10.1109/MIS.2013.140
https://doi.org/10.1016/j.neucom.2007.02.009
http://dx.doi.org/10.1016/j.neucom.2005.03.002
http://dx.doi.org/10.1016/j.neucom.2010.07.012
https://doi.org/10.1109/TCYB.2014.2307349
http://dx.doi.org/10.1109/MIS.2013.140
https://doi.org/10.1109/TNN.2006.880583
https://doi.org/10.1109/TPAMI.2005.205
http://digitalassets.lib.berkeley.edu/math/ucb/text/math_s6_v1_article-32.pdf
http://dx.doi.org/10.1109/CVPR.2012.6247881
https://doi.org/10.1109/CVPR.2012.6247895


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 1, January 2017                                      465 

[29] Y. Wu, B. Shen, and H. Ling, “Online robust image alignment via iterative convex optimization,” 
in Proc. of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 
RI, USA, 2012. Article (CrossRef Link)  

[30] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,” in Proc. of the 2013 IEEE 
Conference on Computer Vision and Pattern Recognition, pp. 2411-2418, Portland, Oregon, USA, 
2013. Article (CrossRef Link) 

[31] M. Kristan, R. Pugfelder, A. Leonardis, A., et al., “The visual object tracking vot2014 challenge 
results,” in Proc. of the Computer Vision-ECCV 2014Workshops, pp. 191-217, Springer, Zurich, 
Switzerland, 2014. Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Zhihui Wang received the B.Sc. degree in applied mathematics from Qufu Normal 
University, China, M.Sc. degree in applied mathematics from China Jiliang University, 
and the Ph.D. degree in electronics and information engineering from Chonbuk National 
University, Korea. His research interests include artificial intelligence, pattern 
recognition, and visual tracking. Email: zhihuiwangjl@gmail.com 

 
 

Sook Yoon received the B.S., M.S., and Ph.D. degrees in engineering from Chonbuk 
National University, Jeonbuk, Korea, in 1993, 1995, and 2003, respectively. Until June 
2006, she conducted her postdoctoral research work in EECS at the University of 
California, Berkeley. She is presently an associate professor at Department of Multimedia 
Engineering, Mokpo National University, Jeonnam, Korea. Her current research interests 
include image processing, pattern recognition, machine learning, and multimedia 
computing. Email: syoon@mokpo.ac.kr 

 
 

Dong Sun Park received the B.S. degree from Korea University, Seoul, Korea, in 
1979, and the M.S. and Ph.D. degrees from the University of Missouri, Columbia, in 1984 
and 1990, respectively. He is currently a Professor at Division of Electronics Engineering, 
Chonbuk National University, Jeonbuk, Korea. His current research interests include 
image processing, pattern recognition, computer vision, artificial intelligence and deep 
learning. Email: dspark@jbnu.ac.kr 

 

https://doi.org/10.1109/CVPR.2012.6247878
https://doi.org/10.1109/CVPR.2013.312
http://dx.doi.org/10.1007/978-3-319-16181-5_14

