• Title/Summary/Keyword: visual intelligence

Search Result 255, Processing Time 0.026 seconds

Analysis of Success Factors of OTT Original Contents Through BigData, Netflix's 'Squid Game Season 2' Proposal (빅데이터를 통한 OTT 오리지널 콘텐츠의 성공요인 분석, 넷플릭스의 '오징어게임 시즌2' 제언)

  • Ahn, Sunghun;Jung, JaeWoo;Oh, Sejong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • This study analyzes the success factors of OTT original content through big data, and intends to suggest scenarios, casting, fun, and moving elements when producing the next work. In addition, I would like to offer suggestions for the success of 'Squid Game Season 2'. The success factor of 'Squid Game' through big data is first, it is a simple psychological experimental game. Second, it is a retro strategy. Third, modern visual beauty and color. Fourth, it is simple aesthetics. Fifth, it is the platform of OTT Netflix. Sixth, Netflix's video recommendation algorithm. Seventh, it induced Binge-Watch. Lastly, it can be said that the consensus was high as it was related to the time to think about 'death' and 'money' in a pandemic situation. The suggestions for 'Squid Game Season 2' are as follows. First, it is a fusion of famous traditional games of each country. Second, it is an AI-based planned MD product production and sales strategy. Third, it is casting based on artificial intelligence big data. Fourth, secondary copyright and copyright sales strategy. The limitations of this study were analyzed only through external data. Data inside the Netflix platform was not utilized. In this study, if AI big data is used not only in the OTT field but also in entertainment and film companies, it will be possible to discover better business models and generate stable profits.

Development of artificial intelligent system for visual assistance to the Visually Handicapped (시각장애인을 위한 시각 도움 서비스를 제공하는 인공지능 시스템 개발)

  • Oh, Changhyeon;Choi, Gwangyo;Lee, Hoyoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1290-1293
    • /
    • 2021
  • Currently, blind people are experiencing a lot of inconvenience in their daily lives. In order to provide helpful service for the visually impaired, this study was carried out to make a new smart glasses that transmit information monitoring walking environment in real-time object recognition. In terms of object recognition, YOLOv4 was used as the artificial intelligence model. The objects, that should be identified during walking of the visually impaired, were selected, and the learning data was populated from them and re-learning of YOLOv4 was performed. As a result, the accuracy was average of 68% for all objects, but for essential objects (Person, Bus, Car, Traffic_light, Bicycle, Motorcycle) was measured to be 84%. In the future, it is necessary to secure the learning data in more various ways and conduct CNN learning with various parameters using darkflow rather than YOLOv4 to perform comparisons in the various ways.

Object Detection Based on Deep Learning Model for Two Stage Tracking with Pest Behavior Patterns in Soybean (Glycine max (L.) Merr.)

  • Yu-Hyeon Park;Junyong Song;Sang-Gyu Kim ;Tae-Hwan Jun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.89-89
    • /
    • 2022
  • Soybean (Glycine max (L.) Merr.) is a representative food resource. To preserve the integrity of soybean, it is necessary to protect soybean yield and seed quality from threats of various pests and diseases. Riptortus pedestris is a well-known insect pest that causes the greatest loss of soybean yield in South Korea. This pest not only directly reduces yields but also causes disorders and diseases in plant growth. Unfortunately, no resistant soybean resources have been reported. Therefore, it is necessary to identify the distribution and movement of Riptortus pedestris at an early stage to reduce the damage caused by insect pests. Conventionally, the human eye has performed the diagnosis of agronomic traits related to pest outbreaks. However, due to human vision's subjectivity and impermanence, it is time-consuming, requires the assistance of specialists, and is labor-intensive. Therefore, the responses and behavior patterns of Riptortus pedestris to the scent of mixture R were visualized with a 3D model through the perspective of artificial intelligence. The movement patterns of Riptortus pedestris was analyzed by using time-series image data. In addition, classification was performed through visual analysis based on a deep learning model. In the object tracking, implemented using the YOLO series model, the path of the movement of pests shows a negative reaction to a mixture Rina video scene. As a result of 3D modeling using the x, y, and z-axis of the tracked objects, 80% of the subjects showed behavioral patterns consistent with the treatment of mixture R. In addition, these studies are being conducted in the soybean field and it will be possible to preserve the yield of soybeans through the application of a pest control platform to the early stage of soybeans.

  • PDF

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

Decision Tree Generation Algorithm for Image-based Video Conferencing

  • Yunsick Sung;Jeonghoon Kwak;Jong Hyuk Park
    • Journal of Internet Technology
    • /
    • v.20 no.5
    • /
    • pp.1535-1545
    • /
    • 2019
  • Recently, the diverse kinds of applications in multimedia computing have been developed for visual surveillance, healthcare, smart cities, and security. Video conferencing is one of core applications among multimedia applications. The Quality of Service of video conferencing is a major issue, because of limited network traffic. Video conferencing allow a large number of users to converse with each other. However, the huge amount of packets are generated in the process of transmitting and receiving the photographed images of users. Therefore, the number of packets in video conferencing needs to be reduced. Video conferencing can be conducted in virtual reality by sending only the control signals of virtual characters and showing virtual characters based on the received signals to represent the users, instead of the photographed images of the users, in real time. This paper proposes a method that determines representative photographed images by analyzing the collected photographed images of users, using KMedoids algorithm and a decision tree, and expresses the users based on the analyzed images. The decision tree used for video conferencing are generated automatically using the proposed method. Given that the behaviors in the decision tree is added or changed considering photographed images, it is possible to reproduce the decision tree by photographing the behavior of the user in real-time. In an experiment conducted, 63 consecutively photographed images were collected and a decision tree generated by using the silhouette images of the photographed images. Indices of the silhouette images were utilized to express a subject and one index was selected using a decision tree. The proposed method reduced the number of comparisons by a factor of 3.78 compared with the traditional method that uses correlation coefficient. Further, each user's image could be outputted by using only the control image table of the image and the index.

Story-based Information Retrieval (스토리 기반의 정보 검색 연구)

  • You, Eun-Soon;Park, Seung-Bo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.81-96
    • /
    • 2013
  • Video information retrieval has become a very important issue because of the explosive increase in video data from Web content development. Meanwhile, content-based video analysis using visual features has been the main source for video information retrieval and browsing. Content in video can be represented with content-based analysis techniques, which can extract various features from audio-visual data such as frames, shots, colors, texture, or shape. Moreover, similarity between videos can be measured through content-based analysis. However, a movie that is one of typical types of video data is organized by story as well as audio-visual data. This causes a semantic gap between significant information recognized by people and information resulting from content-based analysis, when content-based video analysis using only audio-visual data of low level is applied to information retrieval of movie. The reason for this semantic gap is that the story line for a movie is high level information, with relationships in the content that changes as the movie progresses. Information retrieval related to the story line of a movie cannot be executed by only content-based analysis techniques. A formal model is needed, which can determine relationships among movie contents, or track meaning changes, in order to accurately retrieve the story information. Recently, story-based video analysis techniques have emerged using a social network concept for story information retrieval. These approaches represent a story by using the relationships between characters in a movie, but these approaches have problems. First, they do not express dynamic changes in relationships between characters according to story development. Second, they miss profound information, such as emotions indicating the identities and psychological states of the characters. Emotion is essential to understanding a character's motivation, conflict, and resolution. Third, they do not take account of events and background that contribute to the story. As a result, this paper reviews the importance and weaknesses of previous video analysis methods ranging from content-based approaches to story analysis based on social network. Also, we suggest necessary elements, such as character, background, and events, based on narrative structures introduced in the literature. We extract characters' emotional words from the script of the movie Pretty Woman by using the hierarchical attribute of WordNet, which is an extensive English thesaurus. WordNet offers relationships between words (e.g., synonyms, hypernyms, hyponyms, antonyms). We present a method to visualize the emotional pattern of a character over time. Second, a character's inner nature must be predetermined in order to model a character arc that can depict the character's growth and development. To this end, we analyze the amount of the character's dialogue in the script and track the character's inner nature using social network concepts, such as in-degree (incoming links) and out-degree (outgoing links). Additionally, we propose a method that can track a character's inner nature by tracing indices such as degree, in-degree, and out-degree of the character network in a movie through its progression. Finally, the spatial background where characters meet and where events take place is an important element in the story. We take advantage of the movie script to extracting significant spatial background and suggest a scene map describing spatial arrangements and distances in the movie. Important places where main characters first meet or where they stay during long periods of time can be extracted through this scene map. In view of the aforementioned three elements (character, event, background), we extract a variety of information related to the story and evaluate the performance of the proposed method. We can track story information extracted over time and detect a change in the character's emotion or inner nature, spatial movement, and conflicts and resolutions in the story.

Records Management and Archives in Korea : Its Development and Prospects (한국 기록관리행정의 변천과 전망)

  • Nam, Hyo-Chai
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.1 no.1
    • /
    • pp.19-35
    • /
    • 2001
  • After almost one century of discontinuity in the archival tradition of Chosun dynasty, Korea entered the new age of records and archival management by legislating and executing the basic laws (The Records and Archives Management of Public Agencies Ad of 1999). Annals of Chosun dynasty recorded major historical facts of the five hundred years of national affairs. The Annals are major accomplishment in human history and rare in the world. It was possible because the Annals were composed of collected, selected and complied records of primary sources written and compiled by generations of historians, As important public records are needed to be preserved in original forms in modern archives, we had to develop and establish a modern archival system to appraise and select important national records for archival preservation. However, the colonialization of Korea deprived us of the opportunity to do the task, and our fine archival tradition was not succeeded. A centralized archival system began to develop since the establishment of GARS under the Ministry of Government Administration in 1969. GARS built a modem repository in Pusan in 1984 succeeding to the tradition of History Archives of Chosun dynasty. In 1998, GARS moved its headquarter to Taejon Government Complex and acquired state-of-the-art audio visual archives preservation facilities. From 1996, GARS introduced an automated archival management system to remedy the manual registration and management system complementing the preservation microfilming. Digitization of the holdings was the key project to provided the digital images of archives to users. To do this, the GARS purchased new computer/server systems and developed application softwares. Parallel to this direction, GARS drastically renovated its manpower composition toward a high level of professionalization by recruiting more archivists with historical and library science backgrounds. Conservators and computer system operators were also recruited. The new archival laws has been in effect from January 1, 2000. The new laws made following new changes in the field of records and archival administration in Korea. First, the laws regulate the records and archives of all public agencies including the Legislature, the Judiciary, the Administration, the constitutional institutions, Army, Navy, Air Force, and National Intelligence Service. A nation-wide unified records and archives management system became available. Second, public archives and records centers are to be established according to the level of the agency; a central archives at national level, special archives for the National Assembly and the Judiciary, local government archives for metropolitan cities and provinces, records center or special records center for administrative agencies. A records manager will be responsible for the records management of each administrative divisions. Third, the records in the public agencies are registered in the computer system as they are produced. Therefore, the records are traceable and will be searched or retrieved easily through internet or computer network. Fourth, qualified records managers and archivists who are professionally trained in the field of records management and archival science will be assigned mandatorily to guarantee the professional management of records and archives. Fifth, the illegal treatment of public records and archives constitutes a punishable crime. In the future, the public records find archival management will develop along with Korean government's 'Electronic Government Project.' Following changes are in prospect. First, public agencies will digitize paper records, audio-visual records, and publications as well as electronic documents, thus promoting administrative efficiency and productivity. Second, the National Assembly already established its Special Archives. The judiciary and the National Intelligence Service will follow it. More archives will be established at city and provincial levels. Third, the more our society develop into a knowledge-based information society, the more the records management function will become one of the important national government functions. As more universities, academic associations, and civil societies participate in promoting archival awareness and in establishing archival science, and more people realize the importance of the records and archives management up to the level of national public campaign, the records and archival management in Korea will develop significantly distinguishable from present practice.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

The Relationship between Hair Zinc and Lead Levels and Clinical Features of Attention-Deficit Hyperactivity Disorder

  • Shin, Dong-Won;Kim, Eun-Ji;Oh, Kang-Seob;Shin, Young-Chul;Lim, Se-Won
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.25 no.1
    • /
    • pp.28-36
    • /
    • 2014
  • Objectives : The goal of this study was to examine the association between zinc and lead level and symptoms of attention-deficit hyperactivity disorder (ADHD) among Korean children. Methods : A total of 89 clinic-referred children participated in the study (ADHD group=45, control group=44). The participants were 5-15 years old, and were mainly from urban areas of Seoul, Korea. ADHD was diagnosed using the Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version. We excluded children with a comorbid psychiatric disorder, medical illness requiring medication, or a prior history of taking ADHD medication. In order to evaluate the severity of ADHD symptoms, parents' Korean ADHD Rating Scale (K-ARS) was used. The ADHD diagnostic system (ADS) was used for evaluation of the severity of inattention and impulsivity. All participants completed the intelligence test and hair mineral analysis. Multiple regression analysis was used to examine the effect of hair zinc and lead levels on the K-ARS and ADS. We measured the predictive ability of the zinc and lead levels using logistic regression analysis. Results : The lead level explained the score for omission errors, commission errors, and response time SD in visual ADS in the ADHD group (adjusted $R^2$=.243, p<.01, adjusted $R^2$=.362, p<.01, and adjusted $R^2$=.275, p<.01), the score for omission errors of auditory ADS in ADHD group (adjusted $R^2$=.407, p<.01) and the entire group (adjusted $R^2$=.292, p<.01). Zinc was significantly explanatory for the K-ARS scores for the entire group (adjusted $R^2$=.248, p<.001) and the ADHD group (adjusted $R^2$=.247, p<.05). Conclusion : These findings suggest a possible role of zinc and lead in ADHD. Lead concentration in hair samples affected the ADS scores, and this was more prominent in children with ADHD. Children with ADHD had a lower zinc concentration in their hair, and the zinc concentration in hair showed negative correlation with the K-ARS score.

Study on a Methodology for Developing Shanghanlun Ontology (상한론(傷寒論)온톨로지 구축 방법론 연구)

  • Jung, Tae-Young;Kim, Hee-Yeol;Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.765-772
    • /
    • 2011
  • Knowledge which is represented by formal logic are widely used in many domains such like artificial intelligence, information retrieval, e-commerce and so on. And for medical field, medical documentary records retrieval, information systems in hospitals, medical data sharing, remote treatment and expert systems need knowledge representation technology. To retrieve information intellectually and provide advanced information services, systematically controlled mechanism is needed to represent and share knowledge. Importantly, medical expert's knowledge should be represented in a form that is understandable to computers and also to humans to be applied to the medical information system supporting decision making. And it should have a suitable and efficient structure for its own purposes including reasoning, extendability of knowledge, management of data, accuracy of expressions, diversity, and so on. we call it ontology which can be processed with machines. We can use the ontology to represent traditional medicine knowledge in structured and systematic way with visualization, then also it can also be used education materials. Hence, the authors developed an Shanghanlun ontology by way of showing an example, so that we suggested a methodology for ontology development and also a model to structure the traditional medical knowledge. And this result can be used for student to learn Shanghanlun by graphical representation of it's knowledge. We analyzed the text of Shanghanlun to construct relational database including it's original text, symptoms and herb formulars. And then we classified the terms following some criterion, confirmed the structure of the ontology to describe semantic relations between the terms, especially we developed the ontology considering visual representation. The ontology developed in this study provides database showing fomulas, herbs, symptoms, the name of diseases and the text written in Shanghanlun. It's easy to retrieve contents by their semantic relations so that it is convenient to search knowledge of Shanghanlun and to learn it. It can display the related concepts by searching terms and provides expanded information with a simple click. It has some limitations such as standardization problems, short coverage of pattern(證), and error in chinese characters input. But we believe this research can be used for basic foundation to make traditional medicine more structural and systematic, to develop application softwares, and also to applied it in Shanghanlun educations.