• Title/Summary/Keyword: vision-based recognition

Search Result 633, Processing Time 0.029 seconds

Development of PCB board vision inspection system using image recognition based on deep learning (딥러닝 영상인식을 이용한 PCB 기판 비전 검사 시스템 개발)

  • Chang-hoon Lee;Min-sung Lee;Jeong-min Sim;Dong-won Kang;Tae-jin Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.289-290
    • /
    • 2024
  • PCB(Printed circuit board)생산시에 중요한 역할을 담당하는 비전검사 시스템의 성능은 지속적으로 발전해왔다. 기존 머신 비전 검사 시스템은 이미지가 불규칙하고 비정형일 경우 해석이 어렵고 전문가의 경험에 의존한다. 그리고 비전검사 시스템 개발 당시의 기준과 다른 불량이 발생한다면 검출이 불가능 하거나 정확도가 낮게 나온다. 본 논문에서는 이를 개선하고자 딥러닝 영상인식을 이용한 PCB 기판 비전 검사 시스템을 구현하였다. 딥러닝 영상인식 알고리즘은 YOLOv4를 이용하고, 워핑(warping)과 시킨 PCB 이미지를 학습하여 비전검사 시스템을 구성하였다. 딥러닝 영상인식 기술의 처리 속도를 보완하고자 QR코드로 PCB 기판 종류를 인식하고, 해당 PCB 부품의 미삽은 정답 이미지 바운딩 박스 좌표와 비교하여 불량품을 발견하면 표시해준다. 기판의 부품 인식을 위해 기판 데이터는 직접 촬영하여 수집하였다. 이를 활용하여 PCB 생산 공정에서 비전검사 시스템의 성능이 향상되었고,, 다양한 PCB를 생산에 신속하게 대응할 수 있다.

  • PDF

A method for image-based shadow interaction with virtual objects

  • Ha, Hyunwoo;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 2015
  • A lot of researchers have been investigating interactive portable projection systems such as a mini-projector. In addition, in exhibition halls and museums, there is a trend toward using interactive projection systems to make viewing more exciting and impressive. They can also be applied in the field of art, for example, in creating shadow plays. The key idea of the interactive portable projection systems is to recognize the user's gesture in real-time. In this paper, a vision-based shadow gesture recognition method is proposed for interactive projection systems. The gesture recognition method is based on the screen image obtained by a single web camera. The method separates only the shadow area by combining the binary image with an input image using a learning algorithm that isolates the background from the input image. The region of interest is recognized with labeling the shadow of separated regions, and then hand shadows are isolated using the defect, convex hull, and moment of each region. To distinguish hand gestures, Hu's invariant moment method is used. An optical flow algorithm is used for tracking the fingertip. Using this method, a few interactive applications are developed, which are presented in this paper.

An Indoor Pose Estimation System Based on Recognition of Circular Ring Patterns (원형 링 패턴 인식에 기반한 실내용 자세추정 시스템)

  • Kim, Heon-Hui;Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.512-519
    • /
    • 2012
  • This paper proposes a 3-D pose (positions and orientations) estimation system based on the recognition of circular ring patterns. To deal with monocular vision-based pose estimation problem, we specially design a circular ring pattern that has a simplicity merit in view of object recognition. A pose estimation procedure is described in detail, which utilizes the geometric transformation of a circular ring pattern in 2-D perspective projection space. The proposed method is evaluated through the analysis of accuracy and precision with respect to 3-D pose estimation of a quadrotor-type vehicle in 3-D space.

Hand Gesture Sequence Recognition using Morphological Chain Code Edge Vector (형태론적 체인코드 에지벡터를 이용한 핸드 제스처 시퀀스 인식)

  • Lee Kang-Ho;Choi Jong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.85-91
    • /
    • 2004
  • The use of gestures provides an attractive alternate to cumbersome interface devices for human-computer interaction. This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures The most important issues in gesture recognition are the simplification of algorithm and the reduction of processing time. The mathematical morphology based on geometrical set theory is best used to perform the processing. The key idea of proposed algorithm is to track a trajectory of center points in primitive elements extracted by morphological shape decomposition. The trajectory of morphological center points includes the information on shape orientation. Based on this characteristic we proposed the morphological gesture sequence recognition algorithm using feature vectors calculated to the trajectory of morphological center points. Through the experiment, we demonstrated the efficiency of proposed algorithm.

  • PDF

A Comprehensive Survey of Lightweight Neural Networks for Face Recognition (얼굴 인식을 위한 경량 인공 신경망 연구 조사)

  • Yongli Zhang;Jaekyung Yang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.55-67
    • /
    • 2023
  • Lightweight face recognition models, as one of the most popular and long-standing topics in the field of computer vision, has achieved vigorous development and has been widely used in many real-world applications due to fewer number of parameters, lower floating-point operations, and smaller model size. However, few surveys reviewed lightweight models and reimplemented these lightweight models by using the same calculating resource and training dataset. In this survey article, we present a comprehensive review about the recent research advances on the end-to-end efficient lightweight face recognition models and reimplement several of the most popular models. To start with, we introduce the overview of face recognition with lightweight models. Then, based on the construction of models, we categorize the lightweight models into: (1) artificially designing lightweight FR models, (2) pruned models to face recognition, (3) efficient automatic neural network architecture design based on neural architecture searching, (4) Knowledge distillation and (5) low-rank decomposition. As an example, we also introduce the SqueezeFaceNet and EfficientFaceNet by pruning SqueezeNet and EfficientNet. Additionally, we reimplement and present a detailed performance comparison of different lightweight models on the nine different test benchmarks. At last, the challenges and future works are provided. There are three main contributions in our survey: firstly, the categorized lightweight models can be conveniently identified so that we can explore new lightweight models for face recognition; secondly, the comprehensive performance comparisons are carried out so that ones can choose models when a state-of-the-art end-to-end face recognition system is deployed on mobile devices; thirdly, the challenges and future trends are stated to inspire our future works.

Face Detection Based on Thick Feature Edges and Neural Networks

  • Lee, Young-Sook;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1692-1699
    • /
    • 2004
  • Many researchers have developed various techniques for detection of human faces in ordinary still images. Face detection is the first imperative step of human face recognition systems. The two main problems of human face detection are how to cutoff the running time and how to reduce the number of false positives. In this paper, we present frontal and near-frontal face detection algorithm in still gray images using a thick edge image and neural network. We have devised a new filter that gets the thick edge image. Our overall scheme for face detection consists of two main phases. In the first phase we describe how to create the thick edge image using the filter and search for face candidates using a whole face detector. It is very helpful in removing plenty of windows with non-faces. The second phase verifies for detecting human faces using component-based eye detectors and the whole face detector. The experimental results show that our algorithm can reduce the running time and the number of false positives.

  • PDF

Octree model based fast three-dimensional object recognition (Octree 모델에 근거한 고속 3차원 물체 인식)

  • 이영재;박영태
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.84-101
    • /
    • 1997
  • Inferring and recognizing 3D objects form a 2D occuluded image has been an important research area of computer vision. The octree model, a hierarchical volume description of 3D objects, may be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition. We present a fast algorithm of finding the 4 pairs of feature points to estimate the viewing direction. The method is based on matching the object contour to the reference occuluded shapes of 49 viewing directions. The initially best matched viewing direction is calibrated by searching for the 4 pairs of feature points between the input image and the image projected along the estimated viewing direction. Then the input shape is recognized by matching to the projectd shape. The computational complexity of the proposed method is shown to be O(n$^{2}$) in the worst case, and that of the simple combinatorial method is O(m$^{4}$.n$^{4}$) where m and n denote the number of feature points of the 3D model object and the 2D object respectively.

  • PDF

Human Face Identification using KL Transform and Neural Networks (KL 변환과 신경망을 이용한 개인 얼굴 식별)

  • Kim, Yong-Joo;Ji, Seung-Hwan;Yoo, Jae-Hyung;Kim, Jung-Hwan;Park, Mignon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • Machine recognition of faces from still and video images is emerging as an active research area spanning several disciplines such as image processing, pattern recognition, computer vision and neural networks. In addition, human face identification has numerous applications such as human interface based systems and real-time video systems of surveillance and security. In this paper, we propose an algorithm that can identify a particular individual face. We consider human face identification system in color space, which hasn't often considered in conventional in conventional methods. In order to make the algorithm insensitive to luminance, we convert the conventional RGB coordinates into normalized CIE coordinates. The normalized-CIE-based facial images are KL-transformed. The transformed data are used as the input of multi-layered neural network and the network are trained using error-backpropagation methods. Finally, we verify the system performance of the proposed algorithm by experiments.

  • PDF

Equipment and Worker Recognition of Construction Site with Vision Feature Detection

  • Qi, Shaowen;Shan, Jiazeng;Xu, Lei
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.335-342
    • /
    • 2020
  • This article comes up with a new method which is based on the visual characteristic of the objects and machine learning technology to achieve semi-automated recognition of the personnel, machine & materials of the construction sites. Balancing the real-time performance and accuracy, using Faster RCNN (Faster Region-based Convolutional Neural Networks) with transfer learning method appears to be a rational choice. After fine-tuning an ImageNet pre-trained Faster RCNN and testing with it, the result shows that the precision ratio (mAP) has so far reached 67.62%, while the recall ratio (AR) has reached 56.23%. In other word, this recognizing method has achieved rational performance. Further inference with the video of the construction of Huoshenshan Hospital also indicates preliminary success.

Automatic Recognition of the Front/Back Sides and Stalk States for Mushrooms(Lentinus Edodes L.) (버섯 전후면과 꼭지부 상태의 자동 인식)

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.2
    • /
    • pp.124-137
    • /
    • 1994
  • Visual features of a mushroom(Lentinus Edodes, L.) are critical in grading and sorting as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. To realize the automatic handling and grading of mushrooms in real time, the computer vision system should be utilized and the efficient and robust processing of the camera captured visual information be provided. Since visual features of a mushroom are distributed over the front and back sides, recognizing sides and states of the stalk including the stalk orientation from the captured image is a prime process in the automatic task processing. In this paper, the efficient and robust recognition process identifying the front and back side and the state of the stalk was developed and its performance was compared with other recognition trials. First, recognition was tried based on the rule set up with some experimental heuristics using the quantitative features such as geometry and texture extracted from the segmented mushroom image. And the neural net based learning recognition was done without extracting quantitative features. For network inputs the segmented binary image obtained from the combined type automatic thresholding was tested first. And then the gray valued raw camera image was directly utilized. The state of the stalk seriously affects the measured size of the mushroom cap. When its effect is serious, the stalk should be excluded in mushroom cap sizing. In this paper, the stalk removal process followed by the boundary regeneration of the cap image was also presented. The neural net based gray valued raw image processing showed the successful results for our recognition task. The developed technology through this research may open the new way of the quality inspection and sorting especially for the agricultural products whose visual features are fuzzy and not uniquely defined.

  • PDF