Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.289-290
/
2024
PCB(Printed circuit board)생산시에 중요한 역할을 담당하는 비전검사 시스템의 성능은 지속적으로 발전해왔다. 기존 머신 비전 검사 시스템은 이미지가 불규칙하고 비정형일 경우 해석이 어렵고 전문가의 경험에 의존한다. 그리고 비전검사 시스템 개발 당시의 기준과 다른 불량이 발생한다면 검출이 불가능 하거나 정확도가 낮게 나온다. 본 논문에서는 이를 개선하고자 딥러닝 영상인식을 이용한 PCB 기판 비전 검사 시스템을 구현하였다. 딥러닝 영상인식 알고리즘은 YOLOv4를 이용하고, 워핑(warping)과 시킨 PCB 이미지를 학습하여 비전검사 시스템을 구성하였다. 딥러닝 영상인식 기술의 처리 속도를 보완하고자 QR코드로 PCB 기판 종류를 인식하고, 해당 PCB 부품의 미삽은 정답 이미지 바운딩 박스 좌표와 비교하여 불량품을 발견하면 표시해준다. 기판의 부품 인식을 위해 기판 데이터는 직접 촬영하여 수집하였다. 이를 활용하여 PCB 생산 공정에서 비전검사 시스템의 성능이 향상되었고,, 다양한 PCB를 생산에 신속하게 대응할 수 있다.
A lot of researchers have been investigating interactive portable projection systems such as a mini-projector. In addition, in exhibition halls and museums, there is a trend toward using interactive projection systems to make viewing more exciting and impressive. They can also be applied in the field of art, for example, in creating shadow plays. The key idea of the interactive portable projection systems is to recognize the user's gesture in real-time. In this paper, a vision-based shadow gesture recognition method is proposed for interactive projection systems. The gesture recognition method is based on the screen image obtained by a single web camera. The method separates only the shadow area by combining the binary image with an input image using a learning algorithm that isolates the background from the input image. The region of interest is recognized with labeling the shadow of separated regions, and then hand shadows are isolated using the defect, convex hull, and moment of each region. To distinguish hand gestures, Hu's invariant moment method is used. An optical flow algorithm is used for tracking the fingertip. Using this method, a few interactive applications are developed, which are presented in this paper.
Journal of Advanced Marine Engineering and Technology
/
v.36
no.4
/
pp.512-519
/
2012
This paper proposes a 3-D pose (positions and orientations) estimation system based on the recognition of circular ring patterns. To deal with monocular vision-based pose estimation problem, we specially design a circular ring pattern that has a simplicity merit in view of object recognition. A pose estimation procedure is described in detail, which utilizes the geometric transformation of a circular ring pattern in 2-D perspective projection space. The proposed method is evaluated through the analysis of accuracy and precision with respect to 3-D pose estimation of a quadrotor-type vehicle in 3-D space.
Journal of the Korea Society of Computer and Information
/
v.9
no.4
s.32
/
pp.85-91
/
2004
The use of gestures provides an attractive alternate to cumbersome interface devices for human-computer interaction. This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures The most important issues in gesture recognition are the simplification of algorithm and the reduction of processing time. The mathematical morphology based on geometrical set theory is best used to perform the processing. The key idea of proposed algorithm is to track a trajectory of center points in primitive elements extracted by morphological shape decomposition. The trajectory of morphological center points includes the information on shape orientation. Based on this characteristic we proposed the morphological gesture sequence recognition algorithm using feature vectors calculated to the trajectory of morphological center points. Through the experiment, we demonstrated the efficiency of proposed algorithm.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.1
/
pp.55-67
/
2023
Lightweight face recognition models, as one of the most popular and long-standing topics in the field of computer vision, has achieved vigorous development and has been widely used in many real-world applications due to fewer number of parameters, lower floating-point operations, and smaller model size. However, few surveys reviewed lightweight models and reimplemented these lightweight models by using the same calculating resource and training dataset. In this survey article, we present a comprehensive review about the recent research advances on the end-to-end efficient lightweight face recognition models and reimplement several of the most popular models. To start with, we introduce the overview of face recognition with lightweight models. Then, based on the construction of models, we categorize the lightweight models into: (1) artificially designing lightweight FR models, (2) pruned models to face recognition, (3) efficient automatic neural network architecture design based on neural architecture searching, (4) Knowledge distillation and (5) low-rank decomposition. As an example, we also introduce the SqueezeFaceNet and EfficientFaceNet by pruning SqueezeNet and EfficientNet. Additionally, we reimplement and present a detailed performance comparison of different lightweight models on the nine different test benchmarks. At last, the challenges and future works are provided. There are three main contributions in our survey: firstly, the categorized lightweight models can be conveniently identified so that we can explore new lightweight models for face recognition; secondly, the comprehensive performance comparisons are carried out so that ones can choose models when a state-of-the-art end-to-end face recognition system is deployed on mobile devices; thirdly, the challenges and future trends are stated to inspire our future works.
Many researchers have developed various techniques for detection of human faces in ordinary still images. Face detection is the first imperative step of human face recognition systems. The two main problems of human face detection are how to cutoff the running time and how to reduce the number of false positives. In this paper, we present frontal and near-frontal face detection algorithm in still gray images using a thick edge image and neural network. We have devised a new filter that gets the thick edge image. Our overall scheme for face detection consists of two main phases. In the first phase we describe how to create the thick edge image using the filter and search for face candidates using a whole face detector. It is very helpful in removing plenty of windows with non-faces. The second phase verifies for detecting human faces using component-based eye detectors and the whole face detector. The experimental results show that our algorithm can reduce the running time and the number of false positives.
Journal of the Korean Institute of Telematics and Electronics C
/
v.34C
no.9
/
pp.84-101
/
1997
Inferring and recognizing 3D objects form a 2D occuluded image has been an important research area of computer vision. The octree model, a hierarchical volume description of 3D objects, may be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition. We present a fast algorithm of finding the 4 pairs of feature points to estimate the viewing direction. The method is based on matching the object contour to the reference occuluded shapes of 49 viewing directions. The initially best matched viewing direction is calibrated by searching for the 4 pairs of feature points between the input image and the image projected along the estimated viewing direction. Then the input shape is recognized by matching to the projectd shape. The computational complexity of the proposed method is shown to be O(n$^{2}$) in the worst case, and that of the simple combinatorial method is O(m$^{4}$.n$^{4}$) where m and n denote the number of feature points of the 3D model object and the 2D object respectively.
Kim, Yong-Joo;Ji, Seung-Hwan;Yoo, Jae-Hyung;Kim, Jung-Hwan;Park, Mignon
The Transactions of the Korean Institute of Electrical Engineers A
/
v.48
no.1
/
pp.68-75
/
1999
Machine recognition of faces from still and video images is emerging as an active research area spanning several disciplines such as image processing, pattern recognition, computer vision and neural networks. In addition, human face identification has numerous applications such as human interface based systems and real-time video systems of surveillance and security. In this paper, we propose an algorithm that can identify a particular individual face. We consider human face identification system in color space, which hasn't often considered in conventional in conventional methods. In order to make the algorithm insensitive to luminance, we convert the conventional RGB coordinates into normalized CIE coordinates. The normalized-CIE-based facial images are KL-transformed. The transformed data are used as the input of multi-layered neural network and the network are trained using error-backpropagation methods. Finally, we verify the system performance of the proposed algorithm by experiments.
This article comes up with a new method which is based on the visual characteristic of the objects and machine learning technology to achieve semi-automated recognition of the personnel, machine & materials of the construction sites. Balancing the real-time performance and accuracy, using Faster RCNN (Faster Region-based Convolutional Neural Networks) with transfer learning method appears to be a rational choice. After fine-tuning an ImageNet pre-trained Faster RCNN and testing with it, the result shows that the precision ratio (mAP) has so far reached 67.62%, while the recall ratio (AR) has reached 56.23%. In other word, this recognizing method has achieved rational performance. Further inference with the video of the construction of Huoshenshan Hospital also indicates preliminary success.
Visual features of a mushroom(Lentinus Edodes, L.) are critical in grading and sorting as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. To realize the automatic handling and grading of mushrooms in real time, the computer vision system should be utilized and the efficient and robust processing of the camera captured visual information be provided. Since visual features of a mushroom are distributed over the front and back sides, recognizing sides and states of the stalk including the stalk orientation from the captured image is a prime process in the automatic task processing. In this paper, the efficient and robust recognition process identifying the front and back side and the state of the stalk was developed and its performance was compared with other recognition trials. First, recognition was tried based on the rule set up with some experimental heuristics using the quantitative features such as geometry and texture extracted from the segmented mushroom image. And the neural net based learning recognition was done without extracting quantitative features. For network inputs the segmented binary image obtained from the combined type automatic thresholding was tested first. And then the gray valued raw camera image was directly utilized. The state of the stalk seriously affects the measured size of the mushroom cap. When its effect is serious, the stalk should be excluded in mushroom cap sizing. In this paper, the stalk removal process followed by the boundary regeneration of the cap image was also presented. The neural net based gray valued raw image processing showed the successful results for our recognition task. The developed technology through this research may open the new way of the quality inspection and sorting especially for the agricultural products whose visual features are fuzzy and not uniquely defined.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.