• Title/Summary/Keyword: visible ray range

Search Result 128, Processing Time 0.03 seconds

A Study on the Single Crystal Growth of InGaAsP/GaAs by Vertical LPE System (수직형 LPE 장치에 의한 InGaAsP/GaAs 단결성 성장에 관한 연구)

  • 홍창희;조호성;황상구;오종환;예병덕;박윤호
    • Journal of the Korean Institute of Navigation
    • /
    • v.16 no.2
    • /
    • pp.21-27
    • /
    • 1992
  • Shortening the lasing wavelength(particularly below infrared ; the visible region) of laser diodes is very attractive because it can provide a wide range of applications in the fields of optical information, measurement, sensor, the development of medical instrument, and optical communication through plastic fibers. According to the recent researches on the field, InGaAsP/GaAs was suggested as a material for red-light laser. In this study, in order to grow InGaAsP/GaAs epitaxial layer on InGaAsP/GaAs by LPE, we used GaP and InP two phase solution technique for 670nm and 780 nm region, respectively. Through the X-ray diffraction measurement for the epitaxial layer grown from the experiments, we found that the lattice mismatch of $In_{0.46}Ga_{0.54}As_{0.07}P_{0.93}$/GaAs and $In_{0.19}Ga_{0.81}As_{0.62}P_{0.38}$/GaAs was about +0.3% and +0.1%, respectively.

  • PDF

Preparation of AZO/Ag/AZO multilayer for transparent electrode by using facing targets sputtering method (대향 타겟 스퍼터링 법을 이용한 투명전극용 AZO/Ag/AZO 다층 박막의 제작)

  • Cho, Bum-Jin;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.290-291
    • /
    • 2006
  • We prepared the multilayer with Al doped ZnO (AZO)/Ag/AZO structure. The multilayer were deposited with various thickness of Ag layer on glass substrates at room temperature by using facing targets sputtering (FTS) method. To investigate the electrical, optical and structural properties, we used Hall Effect measurement system, four-point probes. UV-VIS spectrometer with a wavelength of 300 - 100nm, X-ray Diffractometer(XRD) and scanning electron microscopy (SEM). We obtained multilayer thin film with the low resistivity $5,9{\times}10^{-5}{\Omega}cm$ and the average transmittance of 86% m the visible range (400 - 800nm).

  • PDF

Characteristic of ZnO Thin Film Grown on Plastic Substrates for the Application of Transparent Electronic Devices (투명 전자 소자로의 응용을 위해 플라스틱 기판에 성장시킨 ZnO 특성)

  • Lee, Jun-Pyo;Yoon, Yung-Sup;Kang, Seong-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.503-504
    • /
    • 2008
  • ZnO thin films were deposited on glass and plastic substrates at different $Ar/O_2$ gas flow ratio in RF magnetron sputtering system. To investigate structural and optical properties of ZnO thin films, X-ray Diffactometer and UV-Vis Spectrometer were performed, respectively. The obtained films showed a preferred orientation the c-axis perpendicular to the substrate and transmittance above 80 % in visible range.

  • PDF

Investigation of the Annealing Time Effects on the Properties of Sputtered ZnO:Al Thin Films

  • Kim, Deok Kyu;Kim, Hong Bae
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.366-370
    • /
    • 2014
  • ZnO:Al transparent conductive films were deposited on glass substrates by RF magnetron sputtering technique and annealed by rapid thermal annealing system. The influence of annealing time on the structural, electrical, and optical properties of ZnO:Al thin films was investigated by atomic force microscopy, X-ray diffraction, Hall method and optical transmission spectroscopy. As the annealing time increases from 0 to 5 min, the crystallinity is improved, the root main square surface roughness is decreased and the sheet resistance is decreased. The lowest sheet resistance of ZnO:Al thin film is 90 ohm/sq. The reduction of sheet resistance is caused by increasing carrier concentration due to substituent Al ion. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is a blue-shift due to Burstein-Moss effect with increasing annealing time.

Properties of ZnO:Ga thin films deposited by RF magnetron sputtering under various RF power

  • Kim, Deok Kyu;Kim, Hong Bae
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.242-244
    • /
    • 2015
  • ZnO:Ga thin films were deposited by RF magnetron sputtering technique from ZnO (3 wt.% $Ga_2O_3$) target onto glass substrates under various RF power. The influence of RF power on the structural, electrical, and optical properties of ZnO:Ga thin films was investigated by X-ray diffraction, atomic force microscopy, Hall method and optical transmission spectroscopy. As the RF power increases from 50 to 110W, the crystallinity is deteriorated, the root main square surface roughness is decreased and the sheet resistance is increased. The increase of sheet resistance is caused by decreasing carrier concentration due to interstitial Ga ion. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is a red-shift with increasing RF power.

Effect of substrate temperature on the properties of AZO thin film deposited by using facing targets sputtering system

  • Jung, Yu Sup;Choi, Myung Kyu;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Al doped ZnO (AZO) thin film was deposited by using Facing Target Sputtering (FTS) system. This work examined the properties of AZO thin film as a function of the substrate temperature. The sputtering targets were 4 inch diameter disks of AZO (ZnO : $Al_2O_3$ = 98 : 2 wt.% ). The properties of electrical, structural and optical were investigated by 4-point probe, Hall effect measurement, x-ray diffractometer (XRD), field-emitting scanning electron microscopy (FE-SEM), and UV/VIS spectrometer. The lowest resistivity of films was $5.67{\times}10^{-4}{\Omega}.cm$ and the average optical transmittance of the films was above 85% in the visible range.

Characteristics of ITO thin Films Grown under Various Process Condition by Using Facing Target Sputtering (FTS) System (FTS장치를 이용한 다양한 공정 조건에서 제작한 ITO 박막의 특성 분석)

  • Kim, Sangmo;Keum, Min Jong;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.112-115
    • /
    • 2017
  • ITO thin films were grown on the glass substrate under various oxygen gas flow and substrate temperature by using FTS (Facing Target Sputtering) system. To investigate properties of as-prepared films for transparent electrical devices, we employed four-point probe, UV-VIS spectrometer, X-ray diffractometer (XRD), scanning electron microscopy (SEM), Hall Effect measurement system and Atomic Force Microscope (AFM). As a results, all of prepared samples has high transmittance of over 80 % in the visible range (300-800 nm). Their resistivity increased as a function of oxygen gas flow and substrate temperature due to their crystal structure and oxygen defect in the films. As-prepared films have a resistivity of under $10^{-4}({\Omega}-cm)$.

  • PDF

A Facile Synthetic Method of Silver Nanoparticles with a Continuous Size Range from sub-10 nm to 40 nm

  • Piao, Longhai;Lee, Kyung-Hoon;Min, Byoung-Koun;Kim, Woong;Do, Young-Rag;Yoon, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.117-121
    • /
    • 2011
  • Size-controlled Ag nanoparticles (NPs) were prepared from the decomposition of Ag(I) carboxylates using ethanolamine derivatives as a reducing agent without an additional stabilizing agent. The size of the Ag NPs with a narrow size distribution (sub-10 nm to ca. 40 nm) was controlled precisely by varying the processing parameters, such as the type of reducing agent and the chain length of the carboxylate in the Ag(I) carboxylate. The optical properties, surface composition and crystallinity of the Ag NPs were characterized by ultraviolet-visible spectroscopy, gas chromatography-mass spectrometry, thermal gravimetric analysis, transmission electron microscopy and X-ray diffraction.

AI doped ZnO thin film deposited with $O_2$ gas flow rate (산소 가스 유량비에 따라 제작한 Al이 도핑된 ZnO 박막)

  • Cho, Bum-Jin;Keum, Min-Jong;Kim, Kyung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.67-68
    • /
    • 2006
  • We prepared the AZO thin film with different $O_2$ gas flow rate. the AZO thin films were deposited on glass substrate at room temperature, working gas pressure of 1mTorr. the electrical, structural and optical properties of AZO thin films were investigated by using Hall Effect measurement system, X-ray Diffractometer (XRD) and UV-VIS spectrometer. From the results, we could obtain that AZO thin film with low resistivity of $8.5{\times}10^{-4}{\Omega}cm$ was exhibited in specific $O_2$ gas flow rate. Also, the transmittance of over 80% in visible range was observed in specific $O_2$ gas flow rate. In all of the AZO thin film with the transmittance of over 80%, diffraction peak of (002) direction was observed, while amorphous peak was observed in the AZO thin film with the low transmittance.

  • PDF

Properties of AZO Thin Film deposited on the PES Substrate (PES 기판상에 증착된 AZO 박막의 특성)

  • Kim, Sang-Mo;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1072-1076
    • /
    • 2007
  • We prepared the Al doped ZnO (AZO) thin film on polyethersulfon (PES) without any substrate heating by Facing Targets Sputtering (FTS) system. FTS system has two different facing targets. One is ZnO doped the content of Al 2 wt% and the other is Zn in order to decrease resistivity. The electrical, structural and optical properties of AZO thin films were investigated. To evaluate the as-deposited thin film properties, we employed four-point probe (CMT-R100nw, Changmin), Surface profiler (Alpha-step, Tencor), UV/VIS spectrometer (HP), X-ray diffractometer (XRD, Rigaku) and Field Emission Scanning Electron Microscopy (FESEM, Hitachi S-4700). As a result, We obtained that AZO thin film deposited on PES substrate at a DC Power of 150 W, working pressure of 1 mTorr and $O_2$ gas flow ratio of 0.2 exhibited the resistivity of $4.2{\times}10^{-4}\;[{\Omega}cm]$ and the optical transmittance of about 85 % in the visible range.