• 제목/요약/키워드: viscous-damping wall

검색결과 14건 처리시간 0.024초

벽식점성감쇠기의 감쇠 성능에 관한 기초적인 연구 (Experimental Study on Energy Dissipation Capacities of the Viscous Damping Wall)

  • 이장석;김남식;조강표
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.246-251
    • /
    • 2003
  • This paper presents an experimental study on the energy dissipation characteristics of viscous damping wall (VDW). VDW is consisted of a plate floating in a thin case made of steel plated filled with highly viscous silicone oil. Because VDW demonstrates both viscous damping and stiffness characteristics, the viscous resisting force can be expressed as the sum of velocity dependant viscous damping force and displacement dependant restoring force. The viscous resisting force and energy absorbing capacity can be easily adjusted by changing three factors, i.e. viscosity of the fluid, gap distance and area of the wall plates. VDW was tested using a series of harmonic (sinusoidal) displacement history having different frequency and amplitude and the force-displacement relationship was recorded. The relationship between dissipated energy with three factors and the influence of exciting frequency on resisting force were Investigated

  • PDF

The influences of equivalent viscous damping ratio determination on direct displacement-based design of un-bonded post-tensioned (UPT) concrete wall systems

  • Anqi, Gu;Shao-Dong, Shen
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.627-637
    • /
    • 2022
  • Recent years, direct displacement-based design (DDBD) procedure is proposed for the design of un-bonded posttensioned (UPT) concrete wall systems. In the DDBD procedure, the determination of the equivalent viscous damping (EVD) ratio is critical since it would influence the strength demand of the UPT wall systems. Nevertheless, the influence of EVD ratio determination of the UPT wall systems were not thoroughly evaluated. This study was aimed to investigate the influence of different EVD ratio determinations on the DDBD procedure of UPT wall systems. Case study structures with four, twelve and twenty storeys have been designed with DDBD procedure considering different EVD ratio determinations. Nonlinear time history analysis was performed to validate the design results of those UPT wall systems. And the simulation results showed that the global responses of the case study structures were influenced by the EVD ratio determination.

Wind tunnel experiments of a building model incorporating viscous-damping walls

  • Pan, Austin D.E.;Yeung, Ngai
    • Wind and Structures
    • /
    • 제4권3호
    • /
    • pp.261-276
    • /
    • 2001
  • This paper presents an experimental study on the effectiveness of viscous-damping walls in controlling the wind-induced vibrations of a building model. A simple four-story building model, square in plan, was constructed for wind tunnel study. In this paper the description of the model, its instrumentation, and the experimental set-up and methodology are reported. The effectiveness of viscous-damping walls in reducing vibrations was investigated for different fluid levels in the walls, and at varying wind speeds and attack angles. The results show that viscous-damping walls are highly effective in most cases.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

플랩형 부유 방파제의 파랑 반사 및 전달 특성 (Wave Reflection and Transmission Characteristics of Flap-type Floating Breakwaters)

  • 정신택;박우선;김정대
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.2141-2145
    • /
    • 2008
  • 저면에 힌지로 연결된 3종류의 부유 플랩 시스템을 대상으로 수리모형실험을 실시하였다. 이 시스템은 입사파를 반사시키고, 구조적 감쇄 및 점성 감쇄를 이용하여 파랑에너지를 감소시켜 차폐 해역을 제공한다. 다양한 파랑조건에 대하여 파랑의 반사, 전달, 플랩의 회전각 등을 분석하였다. 외해 날개벽을 부착한 형태가 파랑의 전달을 최소화시킬 수 있다.

  • PDF

강제동요를 이용한 원형실린더 점성 롤댐핑 연구 (Study on the Viscous Roll Damping around Circular Cylinder Using Forced Oscillations)

  • 양승호
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.71-76
    • /
    • 2017
  • 선박 및 해양구조물 설계에 있어 롤댐핑에 관한 문제는 유체점성과 현상자체의 비선형성으로 인해 공학자들에게 있어 난제로 남아있다. 본 연구에서는 강제동요방법을 이용하여 원형실린더의 점성 롤감쇠에 관한 연구를 수행하였다. 토크 센서를 이용하여 강제동요 시 발생하는 롤모멘트(roll moment)를 강제동요 주기별로 계측하였고 이를 실험식(empirical formula)과 비교 검토 하였다. 점성에 의한 전단력으로부터 계측된 토크의 크기가 상대적으로 작은 값임에도 불구하고 실험식으로부터 얻어진 계산값들과 정성적으로 유사한 결과를 보였고, 일부 주기에서는 정량적으로도 잘 일치하는 결과를 보였다. 또한, PIV 계측기법을 통해 원형실린더 벽면주위의 유동을 면밀히 관찰하였으며, 유체점성으로 인해 원형실린더 벽면근처에서 경계층이 형성되고 자유수면에서 원형실린더의 주기적인 강제회전동요로 인해 미소한 크기의 파가 생성(wave making)됨을 PIV 계측결과의 분석을 통해 확인하였다. 본 연구에서는 점성 롤감쇠로 인한 실험식의 적합성을 모형시험을 통해 확인하였고, PIV 계측기법을 통해 벽면주위의 유체점성으로 인한 조파현상을 입증하였다.

건물 구조물을 위한 능동 제어 효과를 가지는 수동 점성감쇠기의 최적 설계 (Optimal Design of Passive Viscoelastic Dampers Having Active Control Effect for Building Structures)

  • 황재승;민경원;홍성목
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.225-234
    • /
    • 1995
  • In this study, first, transformation process of damping ratios, whose are evaluated in active control analysis, into damping matrix resulting from installed viscous dampers is illustrated. Then, a method is followed to maximize the effect of response reduction, which leads to optimum locations and size of viscous dampers using sensitivity analysis. Highly coupled nonlinearity between damping ratios and dampers makes it hard to find the optimal size of dampers. Therefore, the nonlinearity is transformed to linear problem with small increments of damping ratios and the size of dampers can be found. However, there are many cases for the size of dampers satisfying the small increment of damping ratios, so it is necessary to select minimum size using optimization technique. To determine optimum locations of dampers, dampers are assumed to be installed between the different stories and their locations are selected corresponding corresponding to the degree of damping size. Numerical examples for the frame structure and the shear wall structure show that optimum locations and size of dampers are different form each other depending on the characteristics of modal responses of the structures. The proposed method in this study can be applied to get optimum locations of active controller in the active control.

  • PDF

A modified replacement beam for analyzing building structures with damping systems

  • Faridani, Hadi Moghadasi;Capsoni, Antonio
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.905-929
    • /
    • 2016
  • This paper assesses efficiency of the continuum method as the idealized system of building structures. A modified Coupled Two-Beam (CTB) model equipped with classical and non-classical damping has been proposed and solved analytically. In this system, complementary (non-classical) damping models composed of bending and shear mechanisms have been defined. A spatial shear damping model which is non-homogeneously distributed has been adopted in the CTB formulation and used to equivalently model passive dampers, viscous and viscoelastic devices, embedded in building systems. The application of continuum-based models for the dynamic analysis of shear wall systems has been further discussed. A reference example has been numerically analyzed to evaluate the efficiency of the presented CTB, and the optimization problems of the shear damping have been finally ascertained using local and global performance indices. The results reveal the superior performance of non-classical damping models against the classical damping. They show that the critical position of the first modal rotation in the CTB is reliable as the optimum placement of the shear damping. The results also prove the good efficiency of such a continuum model, in addition to its simplicity, for the fast estimation of dynamic responses and damping optimization issues in building systems.

Influence of connection detailing on the performance of wall-to-wall vertical connections under cyclic loading

  • Hemamalini, S.;Vidjeapriya, R.
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.437-448
    • /
    • 2020
  • In high rise buildings that utilize precast large panel system for construction, the shear wall provides strength and stiffness during earthquakes. The performance of a wall panel system depends mainly on the type of connection used to transfer the forces from one wall element to another wall element. This paper presents an experimental investigation on different types of construction detailing of the precast wall to wall vertical connections under reverse cyclic loading. One of the commonly used connections in India to connect wall to wall panel is the loop bar connection. Hence for this study, three types of wet connections and one type of dry connection namely: Staggered loop bar connection, Equally spaced loop bar connection, U-Hook connection, and Channel connection respectively were used to connect the precast walls. One third scale model of the wall was used for this study. The main objective of the experimental work is to evaluate the performance of the wall to wall connections in terms of hysteretic behaviour, ultimate load carrying capacity, energy dissipation capacity, stiffness degradation, ductility, viscous damping ratio, and crack pattern. All the connections exhibited similar load carrying capacity. The U-Hook connection exhibited higher ductility and energy dissipation when compared to the other three connections.

투과성 격벽을 이용한 수평 운동하는 사각형 탱크내의 슬로싱 감쇠 (Sloshing Damping in a Swaying Rectangular Tank Using a Porous Bulkhead)

  • 조일형
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.228-236
    • /
    • 2018
  • The performance of a porous swash bulkhead for the reduction of the resonant liquid motion in a swaying rectangular tank was investigated based on the assumption of linear potential theory. The Galerkin method (Porter and Evans, 1995) was used to solve the potential flow model by adding a viscous frictional damping term to the free-surface condition. By comparing the experimental results and the analytical solutions, we verified that the frictional damping coefficient was 0.4. Darcy's law was used to consider the energy dissipation at a porous bulkhead. The tool that was developed with a built-in frictional damping coefficient of 0.4 was confirmed by small-scale experiments. Using this tool, the free-surface elevation, hydrodynamic force (added mass, damping coefficient) on a wall, and the horizontal load on a bulkhead were assessed for various combinations of porosity and submergence depth. It was found that the vertical porous bulkhead can suppress sloshing motions significantly when properly designed and by selecting the appropriate porosity(${\approx}0.1$) and submergence depth.