• Title/Summary/Keyword: viscous instability

Search Result 47, Processing Time 0.029 seconds

THE DELTA STANDING WAVE SOLUTION FOR THE LINEAR SCALAR CONSERVATION LAW WITH DISCONTINUOUS COEFFICIENTS USING A SELF-SIMILAR VISCOUS REGULARIZATION

  • LI, XIUMEI;SHEN, CHUN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1945-1962
    • /
    • 2015
  • This paper is mainly concerned with the formation of delta standing wave for the scalar conservation law with a linear flux function involving discontinuous coefficients by using the self-similar viscosity vanishing method. More precisely, we use the self-similar viscosity to smooth out the discontinuous coefficient such that the existence of approximate viscous solutions to the delta standing wave for the Riemann problem is established and then the convergence to the delta standing wave solution is also obtained when the viscosity parameter tends to zero. In addition, the Riemann problem is also solved with the standard method and the instability of Riemann solutions with respect to the specific small perturbation of initial data is pointed out in some particular situations.

Numerical Simulation on the Onset of Radial Fingering in a Hele-Shaw Cell or a Porous Medium

  • Min Chan Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.112-117
    • /
    • 2024
  • Numerical simulations on the onset and the growth of viscous fingering during the miscible displacement due to the radial source flow were conducted. With introduction of a new stability criterion, the critical log-viscosity ratio, Rc, was found as a function of the Peclet number, Pe. Similar to the previous linear stability analyses, Pe made the system unstable, i.e., accelerated the onset of instability. For a large Pe system, the present numerical simulation yielded much stable results than the previous theoretical predictions This discrepancy was commonly encountered in the comparison between the theoretical prediction and the experimental finding. Additionally, the difference between the rectilinear system and the present one was also discussed. The present system was found more insensitive to the Peclet number than the rectilinear one.

Experimental study and analysis of design parameters for analysis of fluidelastic instability for steam generator tubing

  • Xiong Guangming;Zhu Yong;Long Teng;Tan Wei
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.109-118
    • /
    • 2023
  • In this paper, the evaluation method of fluidelastic instability (FEI) of newly designed steam generator tubing in pressurized water reactor (PWR) nuclear power plants is discussed. To obtain the parameters for prediction of the critical velocity of FEI for steam generator tubes, experimental research is carried out, and the design parameters are determined. Using CFD numerical simulation, the tube array scale of the model experiment is determined, and the experimental device is designed. In this paper, 7 groups of experiments with void fractions of 0% (water), 10%, 20%, 50%, 75%, 85% and 95% were carried out. The critical damping ration, fundamental frequency and critical velocity of FEI of tubes in flowing water were measured. Through calculation, the total mass and instability constant of the immersed tube are obtained. The critical damping ration measured in the experiment mainly included two-phase damping and viscous damping, which changed with the change in void fraction from 1.56% to 4.34%. This value can be used in the steam generator design described in this paper and is conservative. By introducing the multiplier of frequency and square root of total mass per unit length, it is found that the difference between the experimental results and the calculated results is less than 1%, which proves the rationality and feasibility of the calculation method of frequency and total mass per unit length in engineering design. Through calculation, the instability constant is greater than 4 when the void fraction is less than 75%, less than 4 when the void fraction exceeds 75% and only 3.04 when the void fraction is 95%.

Characteristic Flux-Difference Improvement for Inviscid and Viscous Hypersonic Blunt Body Flows

  • Lee Gwang-Seop;Hong Seung-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.48-58
    • /
    • 1999
  • The Characteristic Flux Difference Splitting (CFDS) scheme designed to adapt the characteristic boundary conditions at the wall and inflow/outflow boundary planes satisfies Roe's property U, although the CFDS Jacobian matrix is decomposed by a product of elaborate transformation matrices and explicit eigenvalue matrix. When the CFDS algorithm, thus a variant of Roe's scheme, is applied straightforwardly to hypersonic flows over a blunt body, the strong bow shock gradually breaks down near the stagnation point. This numerical instability is widely observed by many researchers employing flux-difference method, known in the literature as the carbuncle phenomenon. Many remedies have been proposed and resulted in partial cures. When the idea of Sanders et al. which identifies the minimum eigenvalues near the discontinuity present is applied to CFDS method, it is shown that the instability problem can be controlled successfully. A few flux splitting methods have also been tested and results are compared against the Nakamori's Mach 8 blunt body flow.

  • PDF

Classical shell theory for instability analysis of concrete pipes conveying nanofluid

  • Keikha, Reza;Heidari, Ali;Hosseinabadi, Hamidreza;Haghighi, Mohammad Salkhordeh
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2018
  • This paper deals with the instability analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The fluid is mixed by $AL_2O_3$ nanoparticles where the effective material properties of fluid are obtained by mixture rule. The applied force by the internal fluid is calculated by Navier-Stokes equation. The structure is simulated by classical cylindrical shell theory and using energy method and Hamilton's principle, the motion equations are derived. Based on Navier method, the critical fluid velocity of the structure is calculated and the effects of different parameters such as fluid velocity, volume percent of nanoparticle in fluid and geometrical parameters of the pipe are considered. The results present that with increasing the volume percent of nanoparticle in fluid, the critical fluid velocity increase.

THE INSTABILITIES OF ACCRETION DISKS WITH RADIAL ADVECTION

  • WU XUE-BING
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.231-232
    • /
    • 1996
  • The local instabilities of accretion disks were extensively studied, with the considerations of radial advection, thermal diffusion and different disk geometry, dominated pressure and optical depth. Two inertial-acoustic modes in a geometrically thin, radiative cooling dominated disk depart from each other if very little advection is included. A geometrically slim, advection-dominated disk is found to be always stable if it is optically thin. However, if it is optically thick, the thermal diffusion has no effect on the stable viscous mode but has a significant contribution to enhance the thermal instability.

  • PDF

Thermal instability during the melting process in an isothermally heated horizontal cylinder (등온가열 수평원관내 융해과정동안의 열적 불안정성)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2046-2056
    • /
    • 1996
  • The constrained melting inside an isothermally heated horizontal cylinder has been repeatedly investigated in many studies only for the moderate Rayleigh numbers. This study extends the range of Rayleigh numbers to systematically investigate the transition during melting processes, especially focusing on the complex multi-cellular flow pattern and thermal instability. The enthalpy-porosity formulation, with appropriate source terms to account for the phase change, is employed. For low Rayleigh numbers, initially developed single-cell base flow keeps the flow stable. For moderate Rayleigh numbers, even small disturbances in balance between thermal buoyance force and viscous force result in branched flow structure. For high Rayleight numbers, Benard type convection is found to develop within a narrow gap between thee wall and the unmelted solid. The marginal Rayleigh number and the corresponding wave number are in excellent agreement with those from linear stability theory.

LINEAR INSTABILITY ANALYSIS OF A WATER SHEET TRAILING FROM A WET SPACER GRID IN A ROD BUNDLE

  • Kang, Han-Ok;Cheung, Fan-Bill
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.895-910
    • /
    • 2013
  • The reflood test data from the rod bundle heat transfer (RBHT) test facility showed that the grids in the upper portion of the rod bundle could become wet well before the arrival of the quench front and that the sizes of liquid droplets downstream of a wet grid could not be predicted by the droplet breakup models for a dry grid. To investigate the water droplet generation from a wet grid spacer, a viscous linear temporal instability model of the water sheet issuing from the trailing edge of the grid with the surrounding steam up-flow is developed in this study. The Orr-Sommerfeld equations along with appropriate boundary conditions for the flow are solved using Chebyshev series expansions and the Tau-Galerkin projection method. The effects of several physical parameters on the water sheet oscillation are studied by determining the variation of the temporal growth rate with the wavenumber. It is found that a larger relative steam velocity to water velocity has a tendency to destabilize the water sheet with increased dynamic pressure. On the other hand, a larger ratio of steam boundary layer to the half water sheet thickness has a stabilizing effect on the water sheet oscillation. Droplet diameters downstream of the spacer grid predicted by the present model are found to compare reasonably well with the data obtained at the RBHT test facility as well as with other data recently reported in the literature.

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

Numerical Simulation of Pulsatile Flows around Micro-Stenosis for Blood Analog Fluids (혈액모사유체의 미세협착 주변 맥동유동 시뮬레이션)

  • Song, Jae Min;Hong, Hyeonji;Ha, Yi Kyung;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.10-16
    • /
    • 2019
  • Considering the role of viscosity in the hemorheology, the characteristics of non-Newtonian fluid are important in the pulsatile blood flows. Stenosis, with an abnormal narrowing of the vessel, contributes to block blood flows to downstream tissue and lead to plaque rupture. Therefore, systematic analysis of blood flow around stenosed vessels is crucial. In this study, non-Newtonian behaviors of blood analog fluids around the micro-stenosis with 60 % severity in diameter of $500{\mu}m$ was examined by using CFX under the pulsatile flow conditions with the period of 10 s. Viscosity information of two non-Newtonian fluids were obtained by fitting the value of normal blood and highly viscous blood. As the Newtonian fluid, the water at room temperature was used. During the pulsatile phase, wall shear stress (WSS) is highly oscillated. In addition, high viscous solution gives rise to increases the variation in the WSS around the micro-stenosis. Highly oscillating WSS enhance increasing tendency of plaque instability or rupture and damage of the tissue layer. These results, related to the influence on the damage to the endothelium or stenotic lesion, may help clinicians understand relevant mechanisms.