• 제목/요약/키워드: viscous effect

검색결과 533건 처리시간 0.023초

동심원내에서 진동하는 내부 실린더에 작용하는 유체유발력의 근사적 해법 (An Approximate Analytical Method for Hydrodynamic Forces on Oscillating Inner Cylinder in Concentric Annulus)

  • 심우건
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.861-869
    • /
    • 1997
  • An approximate analytical method has been developed for estimating hydrodynamic forces acting on oscillating inner cylinder in concentric annulus. When the rigid inner cylinder executes translational oscillation, fluid inertia and damping forces on the oscillating cylinder are generated by unsteady pressure and viscous skin friction. Considering the dynamic-characteristics of unsteady viscous flow and the added mass coefficient of inviscid fluid, these hydrodynamic forces including viscous effect are dramatically simplified and expressed in terms of oscillatory Reynolds number and the geometry of annular configuration. Thus, the viscous effect on the forces can be estimated very easily compared to an existing theory. The forces are calculated by two models developed for relatively high and low oscillatory Reynolds numbers. The model for low oscillatory Reynolds number is suitable for relatively high ratio of the penetration depth to annular space while the model for high oscillatory Reynolds number is applicable to the case of relatively low ratio. It is found that the transient ratio between two models is approximately 0.2~0.25 and the forcea are expressed in terms of oscillatory Reynolds number, explicity. The present results show good agreements with an existing numerical results, especially for high and low penetration ratios to annular gap.

  • PDF

The influence of the coupling effect of physical-mechanical fields on the forced vibration of the hydro-piezoelectric system consisting of a PZT layer and a viscous fluid with finite depth

  • Zeynep Ekicioglu, Kuzeci;Surkay D., Akbarov
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.247-263
    • /
    • 2023
  • The paper deals with the study of the mechanical time-harmonic forced vibration of the hydro-piezoelectric system consisting of the piezoelectric plate and compressible viscous fluid with finite depth. The exact equations of motion of the theory of linear electro-elasticity for piezoelectric materials are employed for describing the plate motion, however, the fluid flow is described by employing the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered and the corresponding mathematical problems are solved by employing the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the platelying direction. The expressions of the corresponding Fourier transform are determined analytically, however, the inverse transforms are found numerically. Numerical results on the interface pressure and the electrical potential are obtained for various PZT materials and these results are discussed. According to these results, in particular, it is established that the electromechanical coupling effect can significantly decrease the interface pressure.

선형설계와 수치계산기법 응용 (Hull form Design and Application of CFD Techniques)

  • 강국진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.9-14
    • /
    • 2000
  • Computational methods can be classified roughly into two parts: one is the methods based on a potential flow theory, and the other is numerical solvers(CFD) based on Navier-Stockes equation. Methods based on a potential theory are more effective than CFD when the free surface effect is considered. Especially Rankine source method seems to become widespread for simulations of wave making problems. For computations of viscous flow problems, CFD techniques have rapidly been developed and have shown many successful results in the viscous flow calculation. Present paper introduces a computational system 'WAVIS' which includes a pre-processor, potential ant viscous flow solvers and a post-processor. To validate the system, the calculated results for modem commercial hull forms are compared with measurements. It is found that the results from the system are in good agreement with the experimental data, illustrating the accuracy of the numerical methods employed for WAVIS.

  • PDF

스파이럴 채널을 가진 초소형 점성 펌프의 Navier-Stokes 해석 (NAVIER-STOKES SIMULATION OF A VISCOUS MICRO PUMP WITH A SPIRAL CHANNEL)

  • 서주형;강동진
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.90-95
    • /
    • 2011
  • The Navier-Stokes equations are solved to study the flow characteristics of a micro viscous pump. The viscous micropump is consisted of a stationary disk with a spiral shaped channel and a rotating disk. A simple geometrical model for the tip clearance is proposed and validated by comparing computed flow rate with corresponding experimental data. Present numerical solutions show satisfactory agreement with the corresponding experimental data. The tip clearance effect is found to become significant as the rotational speed increases. As the pressure load increases, a reversed flow region is seen to form near the stationary disk. The height of the channel is shown to be optimized in terms of the flow rate for a given rotational speed and pressure load. The optimal height of the channel becomes small as the rotational speed decreases or the pressure load increases. The flow rate of the pump is found to be in proportion to the width of channel.

크랭크축 비틀림진동점성댐퍼의 설계와 댐퍼 성능시뮬레이션프로그램개발 (A study on the design of the torsional vibration viscous damper for the crankshaft and developing of its performance simulation computer program)

  • 이충기;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.77-96
    • /
    • 1989
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, if the occurence of torsional vibration is confirmed in the design stage or the torsional vibration is observed on the bed of test run, it is necessary to establish some preventive measures to avoid dangerous conditions. Major preventive measures are as follows : 1. Changing the natural frequency of shaft system. 2. Repressing the vibration amplitude by the damping energy. 3. Counterbalancing the exciting torque by the resistant torque. 4. Counterbalacing the harmonic component of exciting energy. In above methos, the damper is the last measure to be used for controlling the torsional vibration. In this thesis, the design of viscous damper that absorbs the exciting energy is investigated and a number of problems associated with the design of viscous damper are treated and a computer pregram for the process of damper design is developed. A viscous damper for a high speed diesel engine is designed and its effect is simulated by the author's computer program.

  • PDF

점성감쇠형 면진장치에 관한 실험적 연구 (Experimental Study on Viscous Fluid Damper for Seismic Base Isolation System)

  • 정민기;박진일;권형오;김두훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.590-595
    • /
    • 1998
  • This study was performed to obtain a numerical model for a viscous fluid damper from an experimental testing. The input signals for displacement were chosen as two type : a triangular and a sinusoidal forms. The performing test parameters were the area of the resistant plate and the oil film thickness of the viscous fluid and the temperature effect was neglected. The numerical model was established by assuming to behavior as an non-Newtonian fluid. The test results were summarized by the equation of F = 0.0308A(V/d)$^{0.51}$25/. Using the obtainal formula, the procedure to apply the viscous damper for a real structure design was introduced..

  • PDF

탄성 및 점성 부하시 공기압 실린더 시스템의 디지털 위치 제어 (Digital Positioning Control of Pneumatic Cylinder System with Elastic and Viscous Load)

  • 박명관;문영진;편창관
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.137-144
    • /
    • 1998
  • For a model system consisted of four pneumatic cylinders with strokes of 10, 20, 40 and 80 mm, investigation was carried out experimentally and numerically about the reliability of system with elastic and viscous load. The elastic load affects the performance of each cylinder in cylinder series, and changes the time lag and the velocity of the piston which makes the positioning control rather difficult. Taking the effects of the elastic load into consideration, positioning can be carried out comparatively smoothly by only adjusting the driving timing. The effect of a viscous load reduces the vibration of each moving body in the cylinder series and also reduces the over-travelled distance which happens when several cylinders move at the same time. For reasons, a positioning with a viscous load can be relatively smoothly carried out even without the timing control.

  • PDF

H-S 유동의 점성효과를 고려한 원심압축기 회전차내부의 준3차원 유동해석 (Quasi-3-Dimensional Analysis of Compressible Flow within a Blade Row Including Viscous Effect in H-S Flow)

  • 오종식;조강래
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3287-3296
    • /
    • 1994
  • For the numerical computation of three-dimensional compressible flow field within a blade row in a centrifugal compressor, a quasi 3-dimensional solver which combines a reversible B-B flow and an irreversible H-S flow using finite element methods was developed. In a reversible B-B flow, the governing coordinates are modified in order to be applied to any type of turbomachinery, and two kinds of stream functions are introduced in order to make the Kutta condition exactly satisfied. In an irreversible H-S flow, the changes of entropy in the irreversible governing equations are determined not by empirical source but by the theoretical treatment of dissipation forces. The dissipation forces are obtained from the distribution of shear stresses in the flow passage which are given from the wall shear stresses using the exponential functions. A more accurate quasi-3-dimensional solver is established where the effect of body forces is involved in the non-axisymmetric H-S flow. Some numerical results obtained from authors' previous studies for axial flow machines assure that the present method is able to predict well as long as the flow is subsonic and not under strong viscous effect.

The evolution of Magnetic fields in IntraClusterMedium

  • Park, Kiwan;Ryu, Dongsu;Cho, Jungyeon
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.49.2-49.2
    • /
    • 2015
  • IntraCluster Medium (ICM) located at the galaxy cluster is in the state of very hot, tenuous, magnetized, and highly ionized X-ray emitting plasmas. High temperature and low density make ICM very viscous and conductive. In addition to the high conductivity, fluctuating random plasma motions in ICM, occurring at all evolution stages, generate and amplify the magnetic fields in such viscous ionized gas. The amplified magnetic fields in reverse drive and constrain the plasma motions beyond the viscous scale through the magnetic tension. Moreover, without the influence of resistivity viscous damping effect gets balanced only with the magnetic tension in the extended viscous scale leading to peculiar ICM energy spectra. This overall collisionless magnetohydrodynamic (MHD) turbulence in ICM was simulated using a hyper diffusivity method. The results show the plasma motions and frozen magnetic fields have power law of $E_V^k{\sim}k^{-3}$, $E_M^k{\sim}k^{-1}$. To explain these abnormal power spectra we set up two simultaneous differential equations for the kinetic and magnetic energy using an Eddy Damped Quasi Normal Markovianized (EDQNM) approximation. The solutions and dimensions of leading terms in the coupled equations derive the power spectra and tell us how the spectra are formed. We also derived the same results with a more intuitive balance relation and stationary energy transport rate.

  • PDF

냉각팬 전동화에 따른 시내버스 연비효과 예측 (Prediction of the Effect of Cooling Fan Electrification on City Bus)

  • 이용규;박진일;이종화
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.908-912
    • /
    • 2013
  • Because of their longer operating times and larger size relative to conventional fans, the cooling fans mounted in buses consume larger amounts of energy. Most of the cooling fans mounted in a bus are connected to the engine by a viscous clutch. A viscous cooling fan's speed is determined by its fluid temperature, which is affected by the air flow through the radiator. The fan does not react immediately to the coolant temperature and in doing so causes unnecessary energy consumption. Therefore, the fuel economy of buses using viscous fans can be improved by changing to an electric cooling fan design, which can be actively controlled. In addition, electric power consumption is increased by using electric cooling fans. Thus, when electric fans are applied in conjunction with the alternator management system (AMS), the fuel economy is further enhanced. In this study, simulations were performed to predict coolant temperature and cooling fan speeds. Simulations were performed for both viscous and electric cooling fans, and power consumption was calculated. Additionally, fuel economy was calculated applying both the alternator management system and the electric cooling fan.