• 제목/요약/키워드: viscosity approximation

검색결과 38건 처리시간 0.03초

기계평면시일의 동적 불안정성에 관한 연구 (On the dynamic instability analysis of mechanical face seals)

  • 김청균;서태석
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1509-1514
    • /
    • 1990
  • 본 연구에서는 비압축성 유체가 온도의 영향을 받아 변화하는 경우에 대한 시 일링 간극내에서의 압력분포를 유한차분법을 이용하여 해석하였다. 여러기서 얻어진 결과를 이용하여 시일의 축력과 모멘트를 해석함으로써 시일의 동적 불안정성에 대하 여 논하였다. 이 때 기계평면시일의 형상은 코닝이 있고, 시일의 중심축이 경사진 경우를 고려하였다.

A GENERAL ITERATIVE ALGORITHM COMBINING VISCOSITY METHOD WITH PARALLEL METHOD FOR MIXED EQUILIBRIUM PROBLEMS FOR A FAMILY OF STRICT PSEUDO-CONTRACTIONS

  • Jitpeera, Thanyarat;Inchan, Issara;Kumam, Poom
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.621-639
    • /
    • 2011
  • The purpose of this paper is to introduce a general iterative process by viscosity approximation method with parallel method to ap-proximate a common element of the set of solutions of a mixed equilibrium problem and of the set of common fixed points of a finite family of $k_i$-strict pseudo-contractions in a Hilbert space. We obtain a strong convergence theorem of the proposed iterative method for a finite family of $k_i$-strict pseudo-contractions to the unique solution of variational inequality which is the optimality condition for a minimization problem under some mild conditions imposed on parameters. The results obtained in this paper improve and extend the corresponding results announced by Liu (2009), Plubtieng-Panpaeng (2007), Takahashi-Takahashi (2007), Peng et al. (2009) and some well-known results in the literature.

Numerical simulation of electrokinetic dissipation caused by elastic waves in reservoir rocks

  • Zhang, Xiaoqian;Wang, Qifei;Li, Chengwu;Sun, Xiaoqi;Yan, Zheng;Nie, Yao
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.11-20
    • /
    • 2019
  • The use of electrokinetic dissipation method to study the fluid flow law in micro-pores is of great significance to reservoir rock microfluidics. In this paper, the micro-capillary theory was combined with the coupling model of the seepage field and the current field under the excitation of the harmonic signal, and the coupling theory of the electrokinetic effect under the first-order approximation condition was derived. The dissipation equation of electrokinetic dissipation and viscous resistance dissipation and its solution were established by using Green's function method. The physical and mathematical models for the electrokinetic dissipation of reservoir rocks were constructed. The microscopic mechanism of the electrokinetic dissipation of reservoir rock were theoretically clarified. The influencing factors of the electrokinetic dissipation frequency of the reservoir rock were analyzed quantitatively. The results show that the electrokinetic effect transforms the fluid flow profile in the pores of the reservoir from parabolic to wavy; under low-frequency conditions, the apparent viscosity coefficient is greater that one and is basically unchanged. The apparent viscosity coefficient gradually approaches 1 as the frequency increases further. The viscous resistance dissipation is two orders of magnitude higher than the electrokinetic effect dissipation. When the concentration of the electrolyte exceeds 0.1mol/L, the electrokinetic dissipation can be neglected, while for the electrolyte solution (<$10^{-2}M$) in low concentration, the electrokinetic dissipation is very significant and cannot be ignored.

기울어진 예혼합 평면화염의 안정성 (Stability of Inclined Premixed Planar Flames)

  • 이대근;김문언;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.97-106
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in gravitational field which generate vorticity is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

기울어진 예혼합 평면화염의 안정성 (Stability of Inclined Premixed Planar Flames)

  • 이대근;김문언;신현동
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.9-21
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in the gravitational field is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

In-vivo 피부의 동적 점탄성 측정 (Measurement of Dynamic Viscoelasticity of In-vivo Human Skin)

  • 권현준;권영하;정철곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.525-526
    • /
    • 2006
  • The products designed by human sensibility and ergonomics are given good impression. Especially the touch feeling on the human skin is very useful sensibility for quality of products. Elasticity and viscosity of human skin is very important element in product design based on ergonomics. In this paper, we describe a sophisticated method for measurement of dynamic viscoelasticity characteristics of human skin. For this measurement, we developed a measurement system assembled with load cell, actuator, amplifier and data acquisition system. The $MATLAB^{TM}$ is used to analyze the data and fit a approximation curves.

  • PDF

SPECTRAL LEGENDRE AND CHEBYSHEV APPROXIMATION FOR THE STOKES INTERFACE PROBLEMS

  • HESSARI, PEYMAN;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권3호
    • /
    • pp.109-124
    • /
    • 2017
  • The numerical solution of the Stokes equation with discontinuous viscosity and singular force term is challenging, due to the discontinuity of pressure, non-smoothness of velocity, and coupled discontinuities along interface.In this paper, we give an efficient algorithm to solve this problem by employing spectral Legendre and Chebyshev approximations.First, we present the algorithm for a problem defined in rectangular domain with straight line interface. Then it is generalized to a domain with smooth curve boundary and interface by employing spectral element method. Numerical experiments demonstrate the accuracy and efficiency of our algorithm and its spectral convergence.

Direct numerical simulations of viscoelastic turbulent channel flows at high drag reduction

  • Housiadas Kostas D.;Beris Antony N.
    • Korea-Australia Rheology Journal
    • /
    • 제17권3호
    • /
    • pp.131-140
    • /
    • 2005
  • In this work we show the results of our most recent Direct Numerical Simulations (DNS) of turbulent viscoelastic channel flow using spectral spatial approximations and a stabilizing artificial diffusion in the viscoelastic constitutive model. The Finite-Elasticity Non-Linear Elastic Dumbbell model with the Peterlin approximation (FENE-P) is used to represent the effect of polymer molecules in solution, The corresponding rheological parameters are chosen so that to get closer to the conditions corresponding to maximum drag reduction: A high extensibility parameter (60) and a moderate solvent viscosity ratio (0.8) are used with two different friction Weissenberg numbers (50 and 100). We then first find that the corresponding achieved drag reduction, in the range of friction Reynolds numbers used in this work (180-590), is insensitive to the Reynolds number (in accordance to previous work). The obtained drag reduction is at the level of $49\%\;and\;63\%$, for the friction Weissenberg numbers 50 and 100, respectively. The largest value is substantially higher than any of our previous simulations, performed at more moderate levels of viscoelasticity (i.e. higher viscosity ratio and smaller extensibility parameter values). Therefore, the maximum extensional viscosity exhibited by the modeled system and the friction Weissenberg number can still be considered as the dominant factors determining the levels of drag reduction. These can reach high values, even for of dilute polymer solution (the system modeled by the FENE-P model), provided the flow viscoelasticity is high, corresponding to a high polymer molecular weight (which translates to a high extensibility parameter) and a high friction Weissenberg number. Based on that and the changes observed in the turbulent structure and in the most prevalent statistics, as presented in this work, we can still rationalize for an increasing extensional resistance-based drag reduction mechanism as the most prevalent mechanism for drag reduction, the same one evidenced in our previous work: As the polymer elasticity increases, so does the resistance offered to extensional deformation. That, in turn, changes the structure of the most energy-containing turbulent eddies (they become wider, more well correlated, and weaker in intensity) so that they become less efficient in transferring momentum, thus leading to drag reduction. Such a continuum, rheology-based, mechanism has first been proposed in the early 70s independently by Metzner and Lamley and is to be contrasted against any molecularly based explanations.

엔진 연결봉 베어링의 최소 유막 두께에 관한 연구 (A Study on the Minimum Oil Film Thickness of Connecting-rod Bearing in Engine)

  • 최재권;허곤;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1993년도 춘계학술대회 및 공장견학
    • /
    • pp.39-53
    • /
    • 1993
  • The minimum oil film thickness(MOFT) in the connecting-rod bering of a 1.5 liter, L-4, gasoline engine is measured up to 5500 rpm and calculated to study the dynamically loaded engine bearing. Short bearing approximation and Mobility method are used for theoretical analysis of oil film charactrtistics. And cylinder pressure, crank-pin surface temperature and bearing tenp ture are measured as the input data of theoretical analysis. The MOFT are measured by the total capacitance method(TCM). To improve the reliability of the test results, a reasonable detmuuination method of bearing clearance is introduced and used, and the effects of cavitation and aeration on the test results are neglected. The crankshaft is grounded by means of a slip ring. A scissor type linkage system was developed to measure the MOFT and bearing temperature. The effects of engine speed, load and oil viscosity on the measured and calculated minimum oil film thicknesses are investigated at 1500 to 5500 rpm. From the comparison between the measured and calculated MOFT, it is found that a qualitative similarity exists between them, but in all cases, the measured MOFT are smaller than those calculated.

  • PDF

광섬유 생산용 유리섬유 인출공정에 대한 복사 열전달 해석 (RADIATIVE HEAT TRANSFER ANALYSIS OF GLASS FIBER DRAWING IN OPTICAL FIBER MANUFACTURING)

  • 김경진;김동주;곽호상
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the glass fiber drawing from a silica preform in the furnace for the optical fiber manufacturing process is numerically simulated by considering the radiative heating of cylindrically shaped preform. The one-dimensional governing equations of the mass, momentum, and energy conservation for the heated and softened preform are solved as a set of the boundary value problems along with the radiative transfer approximation between the muffle tube and the deformed preform shape, while the furnace heating is modeled by prescribing the temperature distribution of muffle tube. The temperature-dependent viscosity of silica plays an important role in formation of preform neck-down profile when the glass fiber is drawn at high speed. The calculated neck-down profile of preform and the draw tension are found to be reasonable and comparable to the actual results observed in the optical fiber industry. This paper also presents the effects of key operating parameters such as the muffle tube temperature distribution and the fiber drawing speed on the preform neck-down profile and the draw tension. Draw tension varies drastically even with the small change of furnace heating conditions such as maximum heating temperature and heating width, and the fine adjustment of furnace heating is required in order to maintain the appropriate draw tension of 100~200 g.