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ABSTRACT. The numerical solution of the Stokes equation with discontinuous viscosity and
singular force term is challenging, due to the discontinuity of pressure, non-smoothness of
velocity, and coupled discontinuities along interface.Inthis paper, we give an efficient algorithm
to solve this problem by employing spectral Legendre and Chebyshev approximations.First, we
present the algorithm for a problem defined in rectangular domain with straight line interface.
Then it is generalized to a domain with smooth curve boundaryand interface by employing
spectral element method. Numerical experiments demonstrate the accuracy and efficiency of
our algorithm and its spectral convergence.

1. INTRODUCTION

Stokes and Navier-Stoles equations with discontinuous viscosity and singular forces have
several applications in science and engineering. The flow pattern of blood in the heart [14] is
a typical one of many examples. In this paper we present a simple and easy to implement, but
efficient algorithm to solve this problem numerically. To state the problem, letΩ be an open
bounded domain inR2 andΓ be a curve separating the domainΩ into two sub-domainsΩ+ and
Ω−, such thatΩ = Ω+ ∪Ω− ∪ Γ. We refer toΓ asinterface. The boundary ofΩ is denoted by
∂Ω and also∂Ω± = Ω± ∩ ∂Ω. We consider the Stokes equation with discontinuous viscosity
across the interface and singular force along the interface, that can be written as







−ν∆u+∇p = f + gδΓ, in Ω,
∇ · u = 0, in Ω,
u = 0, on ∂Ω,

(1.1)
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whereu is the velocity vector,p is the pressure,f is an external force function,g is a force
density defined only on the interfaceΓ andδΓ is the 2-dimensional delta function with support
along the interfaceΓ. We assume that the viscosityν is a piecewise constant defined by

ν(x, y) =

{

ν+, (x, y) ∈ Ω+

ν−, (x, y) ∈ Ω−.

The uniqueness ofp can be achieved by imposing average zero, i.e.,
∫

Ω
pdx = 0.

We call this as“Stokes interface problem”.The existence and uniqueness of the weak solu-
tion of (1.1) can be found in [17]. It is well known that pressure is discontinuous and velocity
continuous but non-smooth along the interface, due to the presence of singular source term
and discontinuous viscosity. Several methods have been proposed for the case of continuous
viscosity with singular source term (See [12] and references therein). However, for discontin-
uous viscosity, the jump condition for velocity and pressure is coupled, and approximating the
solution is problematic. To get accurate numerical approximation, optimal interface conditions
([8, 12]) are necessary. Peskin’s immersed boundary model that was introduced to simulate
the blood flow in a human’s heart [14] is one of the most successful Cartesian grid methods.
LeVeque and Li [12] proposed immersed interface method for Stokes flows which has the sec-
ond order accuracy. The authors in [9] introduced two augmented variables that are defined
only along the interface so that the jump conditions can be decoupled and immersed interface
method can be applied [11]. They get second order immersed interface method using finite dif-
ference discretization. Rutka [18] developed the explicitimmersed interface method (EJIIM)
for two-dimensional Stokes flows on irregular domains whichis up to second order derivatives
along the interface. The authors in [19] using finite volume method, reshaped immersed bound-
ary cells and used polynomial interpolating functions to approximate the fluxes and gradients
on the faces of the boundary cells which is second order accurate.

However, the interface conditions which have been used in above works, include coupled
interface condition for pressure and velocity, as well as zeros, first and second order derivatives
of velocity and pressure. The numerous number of interface conditions and being coupled
cause an expensive computational. The presented algorithmhere is generalization of our previ-
ous work for elliptic interface problems [5]. The advantages of this method beside its spectral
accuracy, is that we use only two interface conditions, one for continuity of velocity and the
other is coupled interface condition for pressure and velocity in which only the first derivative
of velocity is involved. Pseudo-spectral method also have been used to approximate solution
of 1-dimensional elliptic interface problem [16] and 2-dimensional one [5, 15].

The content of the paper is organized as follows. Interface condition are derived in section
2. The pseudo-spectral algorithm is presented in section 3.Numerical examples are given in
section 4 to show efficiency of the proposed algorithm. The paper is finalized with concluding
remarks in section 5.
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2. INTERFACE CONDITIONS

This section concerns deriving interface conditions. As stated earlier, interface condition
has an significant role for obtaining an accurate numerical approximation. In order to derive
interface conditions for the Stokes interface problem, we use finite element principle to the
Stokes equation (1.1). The weak formulation of the Stokes equation reads:

seek (u, p) ∈ H1
0 (Ω)

2 × L2
0(Ω) such that

ν

∫

Ω
∇u · ∇v −

∫

Ω
p (∇ · v) =

∫

Ω
f · v +

∫

Γ
gvds, ∀v ∈ H1

0 (Ω)
2, (2.1)

−
∫

Ω
q (∇ · u) = 0, ∀q ∈ L2

0(Ω). (2.2)

It is well known that pressure is discontinuous and velocityis continuous with discontinuous
derivatives along the interface. Suppose thatu andp are smooth in each sub-domainΩ±. We
apply Green’s formula to (2.1) to get

−
∫

Ω+

[∇ · (ν∇u)] · v−
∫

Ω−

[∇ · (ν∇u)] · v +

∫

Ω+

∇p · v +

∫

Ω−

∇p · v

−
∫

Γ

(

[p · n − ν∇u · n] + g
)

· v =

∫

Ω
f · v.

Here, the interface jump is defined as follows

[v]Γ = v+ − v−,

wherev+ andv− are the traces ofv|Ω+ andv|Ω− , respectively, onΓ. Then, from the above
equation, we have the following strong equations:







−ν±∆u± +∇p± = f±, in Ω±,
∇ · u± = 0, in Ω±,
u± = 0, on ∂Ω±,

(2.3)

along with the following jump condition:

[u]Γ = 0, [ν∇u · n − p · n]Γ = g, (2.4)

wheren = (n1, n2) denotes the unit normal vector on interface pointing intoΩ−. It should be
noted that in our numerical algorithm given in section 3, we use only two interface conditions
(2.4), to get spectral accuracy.

3. PSEUDO-SPECTRAL METHOD

In this section we present an algorithm for solving Stokes interface problem by pseudo-
spectral method [5, 6, 10]. First, we start with a problem defined on the rectangle domain with
straight line interface and then we extend the algorithm to problems with arbitrary domain in
which the boundary and interface curves are smooth. We give some simple facts about pseudo-
spectral method. We use standard notations and definitions for the weighted Sobolev spaces
Hs

ω(Ω) equipped with weighted inner product(·, ·)s,ω and corresponding weighted norms‖ ·
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‖s,ω, s ≥ 0, whereω(x, y) = ω̂(x)ω̂(y) is the Legendre weight function when̂ω(t) = 1 and
Chebyshev weight function when̂ω(t) = 1/

√
1− t2. Let PN be the space of all polynomials

of degree less than or equal toN and let{ξi}Ni=0 be the Legendre Gauss Lobatto (LGL) or
Chebyshev Gauss Lobatto (CGL) points on[−1, 1] such that−1 =: ξ0 < ξ1 < · · · < ξN−1 <
ξN := 1. For Legendre case,{ξi}Ni=0 are zeros of(1−t2)L′

N (t) whereLN is theN th Legendre
polynomial and the corresponding quadrature weights{wi}Ni=0 are given by

w0 = wN =
2

N(N + 1)
, wj =

2

N(N + 1)

1

[LN (ξj)]2
, 1 ≤ j ≤ N − 1. (3.1)

For Chebyshev case,{ξi}Ni=0 are zeros of(1 − t2)T ′

N (t) whereTN is theN th Chebyshev
polynomial and the corresponding quadrature weights{wi}Ni=0 are given by

w0 = wN =
π

2N
, wj =

π

N
, 1 ≤ j ≤ N − 1. (3.2)

For any continuous functionu on [−1, 1], let INu denote its Lagrange interpolation at collo-
cation points{ξi}Ni=0, i.e.,

INu(ξi) = u(ξi), i = 0, 1 · · · , N.
Let {ψj}Nj=0 ⊂ PN be the Lagrange basis functions of degreeN such that

ψj(ξk) = δjk ∀ j, k = 0, 1, · · · , N.
Then

INu(x) =

N
∑

j=0

u(ξj)ψj(x).

The pseudo-spectral derivative∂Nu of a continuous functionu is defined to be the exact deriv-
ative of the interpolant ofu, that is

∂Nu(ξi) =
N
∑

j=0

u(ξj)ψ
′

j(ξi).

Then the pseudo-spectral derivative matrixDN is

DN (i, j) := ψ′

j(ξi).

Let U be the vector valued function containing nodal values ofu at ξj, i.e. U = (u(ξ0), · · · ,
u(ξN ))T , then the derivative vector valued function ofu′ isDNU = (u′(ξ0) , . . . , u

′(ξN ))T .
If the interval[−1 , 1] is replaced by[a , b], then we can use the following linear transformation

t =
b− a

2
(x+ 1) + a : [−1, 1] → [a, b]

to find Gauss-points{ξ̂j}Nj=0 and the quadrature weights{ŵj}Nj=1, respectively given by

ξ̂j =
b− a

2
(ξj + 1) + a and ŵj =

b− a

2
wj.
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Introducing

ψ̂j(t) := ψj(x) = ψj

(

2

b− a
(t− a)− 1

)

,

we obtain the following spectral matrix̂DN

D̂N =
2

b− a
DN where D̂N (i, j) := ψ̂′

j(ξ̂i) =
2

b− a
ψ′

j(ξi).

The two-dimensional LGL and CGL nodes{xij} and weights{wij} are defined as

xij = (ξi, ξj), wij = wiwj , i, j = 0, 1, · · · , N.
Let QN be the space of polynomials of degree less than or equal toN with respect to each
variablex andy. The basis functions are also defined

ψij(x, y) = ψi(x)ψj(y), i, j = 0, 1, . . . , N.

We reorder the LGL and CGL points from bottom to top and then from left to right such that
xk(N+1)+l := xkl = (ξk, ξl) for k, l = 0, 1, · · · , N. Then pseudo-spectral derivative matrix in
2-dimensional space is defined via the Kronecker tensor product, that is

Sx = DN ⊗ IN , Sy = IN ⊗DN ,

Sxx = D2
N ⊗ IN , Syy = IN ⊗D2

N ,

whereIN denotes the identity matrix of the same order asDN .
Here we consider pseudo-spectral method for problem (2.3) and (2.4) with discontinuous

viscosity ν and singular force. LetΩ = (a, b) × (c, d) be a quadrilateral domain andΓ =
{α} × (c, d) be an interface separating the domainΩ into two sub-domainsΩ+ andΩ−, as
depicted in FIGURE 1.

Ω−, ν−Ω+, ν+

(α , c)

(α , d)

(a , c)

(a , d) (b , d)

(b , c)

Γ

FIGURE 1. Schematic of domainΩ, its subdomainsΩ± and interfaceΓ for
Stokes interface problem with discontinuous viscosityν and singular force
along interface.
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Suppose thatv ∈ QN is the pseudo-spectral approximation solution to problem (2.3)-(2.4)
wherev could be velocity or pressure approximation. Then the approximation solution of the
interface problem (2.3) and (2.4) can be expressed by

v±(x, y) =
N
∑

i=0

N
∑

j=0

v±ij ψ
±

ij(x, y).

Although it is possible to use different polynomial order approximation on each subdomain,
we use the same polynomial order approximation, for the sakeof simplicity. Suppose that
u± ∈ Q2

N ∩H1
0 (Ω

±)2 andp± ∈ QM ∩L2
0(Ω

±) are respective pseudo-spectral approximation
of velocity and pressure of the Stokes interface problem (2.3) and (2.4). In this paper, we take
M = N − 2 for the compatibility (or inf-sup) condition([1, 2, 13]).

Hence we have the following equations
{

− ν±∆u±(ξi, ξj) +∇p±(ξi, ξj) = f(ξi, ξj), ∀(ξi, ξj) ∈ Ω±, i, j = 0, 1, . . . , N,

∇ · u±(ξk, ξl) = 0, ∀(ξk, ξl) ∈ Ω±, k, l = 0, 1, . . . ,M,
(3.3)

which can be written in matrix-vector form as

A1X =

[

S+ 0

0 S−

] [

X+

X−

]

=

[

F+

F−

]

= F1,

where,

S± =







−ν±(S±
xx + S±

yy) 0 Ŝ±
x

0 −ν±(S±
xx + S±

yy) Ŝ±
y

Ŝ±
x Ŝ±

y 0






, F± =





f±1 (ξi, ξj)
f±2 (ξi, ξj)

0





andX± =
[

U±

1 , U
±

2 , P
±
]t
. Here

S+
xx =

(

2

α− a

)2

D2
N ⊗ IN , S+

yy =

(

2

d− c

)2

IN ⊗D2
N ,

S−

xx =

(

2

b− α

)2

D2
N ⊗ IN , S−

yy =

(

2

d− c

)2

IN ⊗D2
N ,

Ŝ+
x =

(

2

α− a

)

S̃+
x , Ŝ+

y =

(

2

d− c

)

S̃+
y ,

Ŝ−

x =

(

2

b− α

)

S̃−

x , Ŝ−

y =

(

2

d− c

)

S̃−

y ,

whereS̃±

t , (t = x or y) is pseudo-spectral derivative matrix of velocity interpolated at nodal
points of pressure, andU1, U2 andP are vectors containing the nodal values of functions
u1, u2 andp, respectively.

To impose the jump and boundary conditions, letv±if , v
±

bd andv±in denote the approximation
values ofv± at nodal points on the interface, boundaries, and interior of domainΩ±, respec-
tively. By jump conditions[u]Γ = 0 and[ν∇u · n − p · n]Γ = g, we haveu+

if − u−

if = 0 and
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ν+∇u+
if ·n−p+if ·n−ν−∇u−

if ·n+p−if ·n = G for xi onΓ respectively, whereG = (g(xi) ).
The boundary conditions can be imposed as

u±

bd = 0.

Now, the boundary and jump conditions can be represented in matrix-vector form as

A2X =





B1 0

B2 −B2

B+
3 −B−

3





[

X+

X−

]

= F2

where

B1 =

[

I 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0

]

, B2 =

[

0 0 I 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0

]

,

B±

3 =

[

0 0 ν±(n1S
±
x + n2S

±
y ) 0 0 0 0 0 −n1I

0 0 0 0 0 ν±(n1S
±
x + n2S

±
y ) 0 0 −n2I

]

,

X± =
[

u1
±

bd, u1
±

in, u1
±

if , u2
±

bd, u2
±

in, u2
±

if , p
±

bd, p
±

in, p
±

if

]T

,

and
F2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, G1, 0, 0, G2, 0, 0, 0]

T .

Combining two systems, we have the following linear system

AX = F

whereA = A1 +A2 andF = F1 + F2.
In this paper we use the following stabilization technique (See [1, 2, 13]). If the divergence

operator is applied to the momentum equation in (2.3), owingto the fact thatu is divergence
free, we have

∆p± = ∇ · f± in Ω±. (3.4)

Using the equation (3.4), we stabilized the continuity equation as

∇ · u± − γ∆p± = −γ∇ · f± in Ω

whereγ is a constant. After stabilization, we have

S± =







−ν±(S±
xx + S±

yy) 0 Ŝ±
x

0 −ν±(S±
xx + S±

yy) Ŝ±
y

Ŝ±
x Ŝ±

y −γ(S̃±
xx + S̃±

yy)






,

F± =





f±1 (ξi, ξj)
f±2 (ξi, ξj)

−γS̃±
x f

±

1 (ξk, ξl)− γS̃±
y f

±

2 (ξk, ξl)





where

S̃+
x =

(

2

α− a

)

DM ⊗ IM , S̃+
y =

(

2

d− c

)

IM ⊗DM ,
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S̃+
xx =

(

2

α− a

)2

D2
M ⊗ IM , S̃+

yy =

(

2

d− c

)2

IM ⊗D2
M ,

S̃−

xx =

(

2

b− α

)2

D2
M ⊗ IM , S̃−

yy =

(

2

d− c

)2

IM ⊗D2
M .

Since the matrix−γ(S̃±
xx + S̃±

yy) is symmetric positive definite, the matrixS± become sym-
metric and positive definite. Hence the resulting algebraicsystemAX = F can be efficiently
solved by direct and iterative methods.

Remark 1. In the case of the Stokes interface problem defined on curved domain with curve
interface, a mapping so-called Gordon-Hall transformation [3, 4] can be used to transform
the domain and equations into a rectangular domain. For complete explanation and examples
of Gordon-Hall transformation see[5, 7]. It should be noted that a great advantage of using
Gordon-Hall map and pseudo-spectral method is that the collocation points always lie on the
interface and two neighboring domains share the same nodes on the interface, regardless of
interface shape.

4. NUMERICAL RESULTS

In this section, we first give an example defined on rectangle domain with straight line
interface as in FIGURE 1. And then we present some examples defined on more complicated
domain which make us use pseudo-spectral element method to solve them. Denote byvN the
discrete solution of problem and bye = v − vN , the errors forv ∈ {u1, u2, p}. We present
theirL2

w(Ω) andH1
w(Ω) discrete norm of error which is defined, respectively, as follows:

‖e‖2w,N =
N
∑

i,j=0

wije
2(xij), ‖e‖21,w,N = ‖∇e‖2w,N + ‖e‖2w,N .

Example 1 (Straight line interface). Consider the Stokes interface problem with the following
exact solution

u1(x, y) =

{

x2y3 + exp(y) + sin(πy), (x, y) ∈ Ω+,
2
3x

3y + exp(y) + sin(πy), (x, y) ∈ Ω−,

u2(x, y) =

{

−1
2xy

4 + cos(πx), (x, y) ∈ Ω+,
−x2y2 + cos(πx), (x, y) ∈ Ω−,

p(x, y) =

{

x2(y − 1), (x, y) ∈ Ω+,
(y − 1)3, (x, y) ∈ Ω−,

whereΩ+ = [−1, 0] × [0, 2], Ω− = [0, 1] × [0, 2] andΓ = {0} × [0, 2]. The singular source
termg = [ν∇u · n − p · n]Γ is given by using the above solutions.

The errors inL2
w andH1

w-norm discretization for Legendre and Chebyshev approximation
are given in Tables 1 and 2, respectively, which show the exponential rate of convergence with
respect toN regardless of discontinuous viscosity and singular sourceterm.



SPECTRAL METHOD FOR THE STOKES INTERFACE PROBLEM 117

TABLE 1. Error discretization of Example 1 withν+ = 1 andν− = 5 for
Legendre case.

u1 u2 p

N ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1

6 9.3152e-04 7.9018e-03 1.5884e-03 1.1424e-02 1.6454e-013.4110e-01

10 8.3228e-08 4.8696e-07 1.4383e-07 9.0609e-07 9.3467e-06 4.5888e-05

14 1.5397e-12 9.5044e-12 2.6967e-12 1.7453e-11 9.1089e-10 2.5590e-09

18 2.6239e-14 3.9698e-13 1.9463e-14 6.6407e-13 1.0726e-09 1.2253e-09

TABLE 2. Error discretization of Example 1 withν+ = 1 andν− = 5 for
Chebyshev case.

u1 u2 p

N ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1

6 1.0644e-03 1.6923e-02 1.5043e-03 1.6272e-02 3.0275e-017.0536e-01

10 4.6437e-08 1.5634e-06 9.6710e-08 1.0340e-06 3.6578e-05 2.0598e-04

14 6.5587e-13 3.1726e-11 1.5445e-12 2.0782e-11 2.7876e-09 1.1828e-08

18 1.8977e-13 2.0595e-11 2.6345e-13 4.2578e-11 1.5852e-08 5.0606e-08

The exact solution, approximate solution and the error of pressure for Legendre case of this
example are plotted in FIGURE 2.

Example 2. Let the domainΩ beΩ = [−1, 1]×[−1, 1] and the interface curve bex2+y2 = 1
4 .

The decomposition of domainΩ is given inFIGURE 3. The exact solutions are

u1(x, y) =







y

r
− y

r0
, if r>r0,

0, if r ≤ r0,

u2(x, y) =







−x
r
+
x

r0
, if r>r0,

0, if r ≤ r0,

p(x, y) =

{

cos(πx) cos(πy), if r>r0,

0, if r ≤ r0,

wherer0 = 1
2 , andr =

√

(x2 + y2).

We note that along dashed line common sides, the conditions[u] = 0, [ν∇u · n − p ·
n] = 0 hold. The errors inL2

w andH1
w-norm discretization for Legendre and Chebyshev
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FIGURE 2. Exact and approximate solutions, and its error of pressure forN =
18 of Example 1.

approximation are given in Tables 3 and 4, respectively, which show the spectral convergence
of the proposed algorithm. The exact solution, approximatesolution and the error of pressure
for Legendre case of this example are plotted in FIGURE 4.

TABLE 3. Error discretization of Example 2 for Legenre case, withν+ = 0.1.

u1 u2 p

N ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1

6 1.1195e-01 3.4194e+00 1.0728e-01 2.2860e+00 6.1792e-011.2231e+01

10 1.9327e-05 1.0323e-04 1.9193e-05 1.4186e-04 2.3266e-05 6.5461e-04

14 9.3725e-07 5.1590e-06 8.9838e-07 5.5775e-06 1.8696e-06 1.4162e-04

18 1.4382e-08 1.2166e-07 1.8357e-08 1.2493e-07 5.5682e-08 5.5863e-06

22 3.5617e-10 2.3544e-09 4.0336e-10 2.7923e-09 2.4732e-09 3.3634e-08

26 1.3608e-11 6.9920e-11 1.3506e-11 8.2877e-11 5.2944e-10 1.4156e-09

30 2.9087e-13 1.9949e-12 3.1573e-13 2.1529e-12 1.5060e-10 1.5746e-10
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TABLE 4. Error discretization of Example 2 for Chebychev case, with ν+ = 0.1.

u1 u2 p

N ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1

6 5.7439e-02 2.0566e+00 6.4792e-02 1.5999e+00 5.0340e-018.0266e+00

10 1.4296e-05 2.7028e-04 1.3009e-05 3.5747e-04 1.2682e-03 5.1796e-03

14 2.6209e-07 2.6194e-06 2.4317e-07 4.4447e-06 1.6483e-05 1.7272e-04

18 7.2807e-09 5.3576e-08 6.1460e-09 1.0181e-07 5.0464e-07 2.9558e-06

22 1.6049e-10 1.4202e-09 1.4739e-10 2.7203e-09 1.9297e-08 1.2404e-07

26 4.5497e-12 4.1539e-11 4.0185e-12 8.5765e-11 9.3411e-10 6.2526e-09

30 1.5859e-13 1.6333e-12 1.4411e-13 2.8550e-12 4.2261e-11 2.9465e-10

Ω+Ω−

ν+ν−

Γ

FIGURE 3. Schematic of domainΩ, interfaceΓ and its decomposition for
Stokes interface problems in Examples 2 to 4.

Example 3. We consider an example with smooth velocity and discontinuous pressure across
interface whereΩ = [−2, 2]× [−2, 2] and the interface curve is the unit circle, i.e.,x2+ y2 =
1. The decomposition of domainΩ is given inFIGURE 3. The exact solutions are

{

u1(x, y) = y(x2 + y2 − 1), (x, y) ∈ Ω,

u2(x, y) = −x(x2 + y2 − 1), (x, y) ∈ Ω,
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FIGURE 4. Exact and approximate solutions, and its error of pressure forN =
18 of Example 2.

p(x, y) =

{

1, (x, y) ∈ Ω−,

0, (x, y) ∈ Ω+.

The errors inL2
w andH1

w-norm discretization for Legendre and Chebyshev are given in
Tables 5 and 6, respectively, which are evidence of exponential convergence of the given algo-
rithm.

Example 4. We consider the previous example with the same exact solution inside the unit
circle, but the solutions are set to be zero outside the unit circle. That is

u1(x, y) =

{

y(x2 + y2 − 1), (x, y) ∈ Ω−,

0, (x, y) ∈ Ω+,

u2(x, y) =

{

−x(x2 + y2 − 1), (x, y) ∈ Ω−,

0, (x, y) ∈ Ω+,

p(x, y) =

{

1, (x, y) ∈ Ω−,

0, (x, y) ∈ Ω+.

The errors inL2
w andH1

w-norm discretization for Legendre and Chebyshev are given in
Tables 7 and 8, respectively, which spectral accuracy of theproposed method is evident. Exact
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TABLE 5. Error discretization of Example 3 for Legenre case, withν+ =
0.5, ν− = 1.

u1 u2 p

N ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1

6 1.1024e-02 1.4136e-01 1.7768e-02 1.0353e-01 1.3103e-011.9335e+00

10 1.3774e-04 1.5536e-03 1.3028e-04 1.0648e-03 1.9761e-03 7.6296e-02

14 3.8301e-05 5.0922e-04 2.9098e-05 3.2607e-04 6.1366e-04 1.7891e-03

18 1.7160e-07 1.2512e-06 1.6626e-07 1.1818e-06 2.2675e-06 2.4578e-04

22 5.0688e-09 1.6974e-08 4.8894e-09 1.7565e-08 5.8622e-07 2.6011e-05

26 1.4857e-10 4.1623e-10 1.4310e-10 4.2503e-10 8.0753e-10 2.2968e-07

30 3.9334e-12 1.3770e-11 3.7632e-12 1.3742e-11 5.4204e-10 2.7457e-08

TABLE 6. Error discretization of Example 3 for Chebychev case, with ν+ =
0.5, ν− = 1.

u1 u2 p

N ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1

6 1.5591e-02 2.5490e-01 1.7150e-02 1.9448e-01 4.6610e-014.6766e+00

10 1.0044e-04 4.0661e-03 1.0708e-04 2.6273e-03 4.5261e-03 3.9413e-01

14 3.8558e-05 1.1569e-03 2.1640e-05 8.5232e-04 2.3950e-03 1.0950e-02

18 8.0707e-08 5.6921e-07 7.2241e-08 6.8517e-07 9.1179e-07 9.4338e-04

22 2.0965e-09 1.5632e-08 1.8385e-09 1.6902e-08 2.8407e-08 2.5045e-05

26 5.6011e-11 3.8507e-10 4.8409e-11 4.4236e-10 7.3627e-09 7.2421e-07

30 1.8581e-12 3.4346e-11 1.6809e-12 7.4142e-11 7.5522e-09 5.6789e-08

solution, approximate solution and the error of velocityu2 for N = 18 of this example is
plotted inFIGURE 5.

5. CONCLUDING REMARKS

In this paper, we proposed pseudo-spectral method for Stokes problem with discontinuous
viscosity and singular source term. First, we derived interface conditions and Stokes equations
defined on each sub-domain. The interface conditions are continuity of velocity and coupled
interface condition for velocity and pressure. By using only these two interface conditions we
derive spectral accuracy. Then we obtain a simple and efficient algorithm applying pseudo-
spectral method to each equation. It is shown that the proposed method can be applied to
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FIGURE 5. Exact and approximate solutions, and its error of velocity u2 for
N = 18 of Example 4.

TABLE 7. Error discretization of Example 4 for Legenre case, withν+ =
0.5, ν− = 1.

u1 u2 p

N ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1

6 3.1170e-03 1.9393e-02 2.1546e-03 1.8157e-02 1.7510e-022.3039e-01

10 8.5050e-05 4.9167e-04 7.1075e-05 4.1782e-04 6.9618e-04 5.6093e-02

14 7.0110e-07 1.0418e-05 1.0630e-06 8.4465e-06 1.2114e-05 1.7288e-03

18 2.1192e-08 1.2786e-07 3.4959e-08 1.6806e-07 1.5752e-07 2.3705e-05

22 2.1774e-09 3.5515e-08 3.2506e-09 3.6317e-08 5.4532e-08 1.5405e-05

26 4.0290e-11 4.1343e-10 4.5607e-11 4.7347e-10 1.0386e-09 1.8868e-07

30 1.4386e-12 5.2650e-11 2.3657e-12 4.8110e-11 8.2063e-09 2.3467e-08

Stokes interface problem defined on curved domain by using Gordon and Hall transformation.
This means that the method can be extended to pseudo-spectral element method to solve Stokes
interface problems defined on complicated domain. The numerical experiments also showed
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TABLE 8. Error discretization of Example 4 for Chebychev case, with ν+ =
0.5, ν− = 1.

u1 u2 p

N ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1 ‖e‖L2 ‖e‖H1

6 4.0280e-03 3.6396e-02 2.6758e-03 3.8719e-02 2.6615e-024.8940e-01

10 2.2951e-05 3.6981e-04 2.9940e-05 4.0711e-04 3.8221e-04 5.9888e-02

14 4.7602e-07 4.1613e-05 6.9575e-07 3.0613e-05 5.1888e-05 9.5297e-03

18 9.9876e-09 2.9337e-07 1.6508e-08 3.5445e-07 4.3810e-07 1.0009e-04

22 2.3777e-10 7.5238e-09 3.4763e-10 7.8269e-09 9.6076e-09 3.0175e-06

26 7.1970e-12 4.9720e-10 1.0349e-11 5.4790e-10 1.6688e-09 2.3394e-07

30 5.7495e-13 5.4610e-11 7.3574e-13 1.0336e-10 1.0196e-08 3.5471e-08

that the method has the spectral convergence high accuracy.Furthermore the method can be
adopted to solve other interface problems such as Navier-Stokes interface problems.
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