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ABSTRACT. The numerical solution of the Stokes equation with diseomus viscosity and
singular force term is challenging, due to the discontinait pressure, non-smoothness of
velocity, and coupled discontinuities along interfacéhiis paper, we give an efficient algorithm
to solve this problem by employing spectral Legendre and@tgev approximations.First, we
present the algorithm for a problem defined in rectangulanalo with straight line interface.
Then it is generalized to a domain with smooth curve boundawy interface by employing
spectral element method. Numerical experiments demaedtia accuracy and efficiency of
our algorithm and its spectral convergence.

1. INTRODUCTION

Stokes and Navier-Stoles equations with discontinuousosity and singular forces have
several applications in science and engineering. The fldtenmeof blood in the heart [14] is
a typical one of many examples. In this paper we present desiamul easy to implement, but
efficient algorithm to solve this problem numerically. Tatstthe problem, le© be an open
bounded domain ifk? andI be a curve separating the dom&iinto two sub-domain§* and
Q~, such thaf) = QF UQ~ UT. We refer tol" asinterface The boundary of? is denoted by
90 and alsdNt = QF N 9. We consider the Stokes equation with discontinuous viggosi
across the interface and singular force along the interthed can be written as

—vAu+Vp= f+4+gér, In Q
V-u=0, in Q, 1.1)
u=>0, on 09,
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whereu is the velocity vectorp is the pressuref is an external force functiorg is a force
density defined only on the interfateanddr is the 2-dimensional delta function with support
along the interfac&'. We assume that the viscosityis a piecewise constant defined by

vt (x,y) e QF
v(z,y) = { v, (m,y) € Q.

The uniqueness gf can be achieved by imposing average zero, i.e.,

/pdw:O.
Q

We call this as'Stokes interface problem”.The existence and uniqueness of the weak solu-
tion of (1.1) can be found in [17]. It is well known that pressus discontinuous and velocity
continuous but non-smooth along the interface, due to thegnmce of singular source term
and discontinuous viscosity. Several methods have begroped for the case of continuous
viscosity with singular source term (See [12] and refersriberein). However, for discontin-
uous viscosity, the jump condition for velocity and pressisrcoupled, and approximating the
solution is problematic. To get accurate numerical appnaxion, optimal interface conditions
(I8, 12]) are necessary. Peskin's immersed boundary mbdélwas introduced to simulate
the blood flow in a human’s heart [14] is one of the most sudae&artesian grid methods.
LeVeque and Li[12] proposed immersed interface method fokes flows which has the sec-
ond order accuracy. The authors in [9] introduced two audetkwmariables that are defined
only along the interface so that the jump conditions can leadaed and immersed interface
method can be applied [11]. They get second order immerseddne method using finite dif-
ference discretization. Rutka [18] developed the expiininersed interface method (EJIIM)
for two-dimensional Stokes flows on irregular domains wligchip to second order derivatives
along the interface. The authors in [19] using finite volunethmd, reshaped immersed bound-
ary cells and used polynomial interpolating functions tpragimate the fluxes and gradients
on the faces of the boundary cells which is second order ateur

However, the interface conditions which have been used avealworks, include coupled
interface condition for pressure and velocity, as well asgzdirst and second order derivatives
of velocity and pressure. The numerous number of interfacaliions and being coupled
cause an expensive computational. The presented algdnghenis generalization of our previ-
ous work for elliptic interface problems [5]. The advanta@é this method beside its spectral
accuracy, is that we use only two interface conditions, amecdntinuity of velocity and the
other is coupled interface condition for pressure and viglagc which only the first derivative
of velocity is involved. Pseudo-spectral method also haenhused to approximate solution
of 1-dimensional elliptic interface problem [16] and 2-@insional one [5, 15].

The content of the paper is organized as follows. Interfacelition are derived in section
2. The pseudo-spectral algorithm is presented in sectidiuBnerical examples are given in
section 4 to show efficiency of the proposed algorithm. Theepss finalized with concluding
remarks in section 5.
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2. INTERFACE CONDITIONS

This section concerns deriving interface conditions. Asest earlier, interface condition
has an significant role for obtaining an accurate numerigpi@imation. In order to derive
interface conditions for the Stokes interface problem, we finite element principle to the
Stokes equation (1.1). The weak formulation of the Stokesigon reads:

seek (u, p) € HY(Q)? x L) such that
v vu-vV—/p(v-v):/f-v+/gvds, Vv € HE(Q)?, (2.1)
Q Q Q r

_/Qq(v.u):Q Vge L3(Q). (2.2)

It is well known that pressure is discontinuous and velo@tgontinuous with discontinuous
derivatives along the interface. Suppose thandp are smooth in each sub-domaiy. We
apply Green’s formula to (2.1) to get

—/m[v.(uvu)]-v_/[v.(yvu)].w/mvp-w [ pev

—/([p'n—VVu'n]—kg) 'V:/f'V.
r Q
Here, the interface jump is defined as follows

[U]F = U+ - U_v
wherev™ andv™ are the traces of|o+ andv|g-, respectively, oi’. Then, from the above
equation, we have the following strong equations:
—vFAut +Vpt = £ in QF,
V-ut =0, in QF, (2.3)
ut =0, on 0Q*,

along with the following jump condition:
[uh‘ = 07 [Vvu ‘N—p- n]l‘ =8, (24)

wheren = (n1,n2) denotes the unit normal vector on interface pointing inta It should be
noted that in our numerical algorithm given in section 3, Wwe anly two interface conditions
(2.4), to get spectral accuracy.

3. PSEUDO-SPECTRAL METHOD

In this section we present an algorithm for solving Stokderface problem by pseudo-
spectral method [5, 6, 10]. First, we start with a problemrdasfion the rectangle domain with
straight line interface and then we extend the algorithmrablems with arbitrary domain in
which the boundary and interface curves are smooth. We give simple facts about pseudo-
spectral method. We use standard notations and definitarnthé weighted Sobolev spaces
H3 () equipped with weighted inner produgt -) ., and corresponding weighted norrhs
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lswss > 0, wherew(z,y) = &(x)w(y) is the Legendre weight function wher(t) = 1 and
Chebyshev weight function whei(t) = 1/v/1 — t2. Let Px be the space of all polynomials
of degree less than or equal 3 and let{¢;} , be the Legendre Gauss Lobatto (LGL) or
Chebyshev Gauss Lobatto (CGL) pointsjeri, 1] suchthat-1 =: {5 < & < -+ < €n-1 <
¢n = 1. For Legendre casé¢; } ¥, are zeros of1 —t2) L'y (t) whereL  is the N Legendre
polynomial and the corresponding quadrature weights Y , are given by

2 2 1

y, Wj = 5
N(N+1)7 7 N(N+1)[Ln(&)]?
For Chebyshev casdg;}Y, are zeros of(1 — ¢2)T4 (t) whereTy is the N** Chebyshev
polynomial and the corresponding quadrature weights Y, are given by
7'(' T

A L= <j<N-1. .
oy W= 1Si<N (32)
For any continuous function on [—1, 1], let Iyu denote its Lagrange interpolation at collo-
cation points{¢; 1Y, i.e.,
Let {v; N, € Py be the Lagrange basis functions of deghésuch that

7=0

Wy = WN = 1<j<N-1. (3.1)

Wy = WN =

Then
N

Inu(z) =Y u(&);(x).
j=0
The pseudo-spectral derivatigg v of a continuous functiom is defined to be the exact deriv-
ative of the interpolant of;, that is

N
Ovu(&) = > ul&)P(&).
j=0

Then the pseudo-spectral derivative matfiy is

Dn (i, 7) := (&)
Let U be the vector valued function containing nodal values at¢;, i.e. U = (u(&), -+ ,
u(én))T, then the derivative vector valued functionwfis DyU = (v (&), ..., u/'(€x))T.
If the interval[—1, 1] is replaced bya, b], then we can use the following linear transformation
_b—a
2

to find Gauss-points¢; Xy and the quadrature weighfs); } ', , respectively given by
. b— b
ﬁj:—2a(£j—|—1)—|—a and UAJj: @

t

(x+1)+a:[-1,1] — [a,b]

wj.
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Introducing

. 2
50 = vy) = vy (-0 1)),
a
we obtain the following spectral matri&
A 2 AL s 2
Dy =p—— Dy where Dy(i,j) := Vi (&) = b —a ¥;(&)-
The two-dimensional LGL and CGL nod¢s;; } and weights{w;; } are defined as
X’Lj:(g7,7§])7 Wij = Wiwy, 17]:0717 7N

Let Qn be the space of polynomials of degree less than or equal taith respect to each
variablex andy. The basis functions are also defined

We reorder the LGL and CGL points from bottom to top and themfieft to right such that

Xp(N41) 41 2= Xk = (&, &) for k,1 =0,1,--- , N. Then pseudo-spectral derivative matrix in
2-dimensional space is defined via the Kronecker tensomgtothat is

Sy =Dn® Iy, Sy=[N®DN,
Spe =Dy @Iy, Sy =Iy® D3,
wherely denotes the identity matrix of the same order ag.
Here we consider pseudo-spectral method for problem (2@)(2.4) with discontinuous
viscosity » and singular force. Lef2 = (a,b) x (c¢,d) be a quadrilateral domain arid =

{a} x (c,d) be an interface separating the dom&into two sub-domain§2* andQ~, as
depicted in FGURE 1.

(a,d) (o, d) (b, d)

o vt Qv

(a,c) (a,c) (b,c)

FIGURE 1. Schematic of domaife, its subdomain2* and interface for
Stokes interface problem with discontinuous viscositand singular force
along interface.
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Suppose that € Qy is the pseudo-spectral approximation solution to probl2rR){(2.4)
wherewv could be velocity or pressure approximation. Then the appration solution of the
interface problem (2.3) and (2.4) can be expressed by

N N

Ui(x7y) = szz:lj: %ﬁ(%y)

i=0 j=0
Although it is possible to use different polynomial ordepeapximation on each subdomain,
we use the same polynomial order approximation, for the séls@mplicity. Suppose that
ut € 0%, N HY(OF)% andp® € Oy N LE(QF) are respective pseudo-spectral approximation
of velocity and pressure of the Stokes interface proble®) @d (2.4). In this paper, we take
M = N — 2 for the compatibility (or inf-sup) condition([1, 2, 13]).

Hence we have the following equations

- V:tAu:t(fiafj) + Vp:t(gng) = f(§Z7§])7 v(fhgj) S Qi7 Zaj = 07 17 R 7N7
V-ut (g, &) =0, V(R &) € O k1 =0,1,..., M,
which can be written in matrix-vector form as

e [ (] ()

(3.3)

where,
X —vE(SE + S 0 S . [ 68)
st = 0 (8L +5E) SF | FE= | 1E6.E)
S¥ SE 0 0

andX* = [UF, U, P¥]". Here

2 2
+ 2 +
S:v:v < (I) DN®IN’ Syy

2 \? 2 \?
SLF=<ng> Dy ® Iy, %@==<d > Iy ® Dy,
. 2 ~ \ 2 ~
+_ + + _ +
S:v_<a_a>5x7 Sy <d—C> Yy

Al 2 ~ oA 2 5
Sx_<b_a>5x7 Sy_<d_c>5y7

whereS:, (t = x ory) is pseudo-spectral derivative matrix of velocity integiet at nodal
points of pressure, antl;, Us and P are vectors containing the nodal values of functions
u1, ug andp, respectively.

To impose the jump and boundary conditions,gt v;, andv;, denote the approximation
values ofv™ at nodal points on the interface, boundaries, and inteficlomain Q*, respec-
tively. By jump conditionju|r = 0 and[vVu-n —p-njp = g, we haveu;} —u; =0 and
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+ + T - N — i _
1/+Vuif ‘N—pjp-n—v Vu;;-n +pipn= G for x; onT respectively, wher& = (g(x;) ).
The boundary conditions can be imposed as
+ _
u,, =0.

Now, the boundary and jump conditions can be representedirxyvector form as

Bi| o <+
AQX: B2 _BQ |:X—:| F2
By | =B3
where
B_Iooo 0 B 0I 000000
=10 00 I 0 2= 000O0T11UO0TO0TO0]|"
pt_[00 ui(nlsi+n25i) 0 0 0 0 0 —nil
371000 0 0 0 vE(niSy+neSF) 0 0 —nol
T
X:t = |:u1[:)|:d7 ul?;u ulz:'tfa u2[:)|:d7 u27:j|1:17 uzzl‘:fa pl:)ila p?;p pz:tf] )
and

F,=[0,0,0,0,0,0,0,0,0,0, 0, Gy, 0, 0, Ga, 0, 0, 0]
Combining two systems, we have the following linear system
AX=F

whereA = A; + Ay andF = I + Fs.

In this paper we use the following stabilization technigBe«d [1, 2, 13]). If the divergence
operator is applied to the momentum equation in (2.3), owintpe fact that is divergence
free, we have

ApT =V -ff inQ*. (3.4)
Using the equation (3.4), we stabilized the continuity ¢iqueas
V.-ut —yApT = 4V .- ff inQ
where~ is a constant. After stabilization, we have

—vE(SE + S%) 0 S+
St — pi —yi(S;A%:-i— S%) fyi N
Sm Sy _’Y(Smm + Syy)
fl:l:( i7§])
F:t — f2 ( 2y )

) &)
—ySEE (&, &) — vSEf5 (6, &)

where

N 2 ~ 2
5;{=< )DM®IM, 5;=< )IM®DMa
a—a d—c
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2 \? 2 \?
S+ _ 2 G+ _ 2
Smm—<a—a> D]\4®I]\47 Syy—<ﬁ> IM®DJ\/[7
2 \? 2 \?

o— __ 2 o— 2

Sxx— (m) D]\/[®IM7 Syy— <ﬁ> IM®D]\/[-
Since the matrix—~(SE, + Sjy) is symmetric positive definite, the mati$¢ become sym-
metric and positive definite. Hence the resulting algebsgitemA X = F' can be efficiently
solved by direct and iterative methods.

Remark 1. In the case of the Stokes interface problem defined on cumwethid with curve
interface, a mapping so-called Gordon-Hall transformati8, 4] can be used to transform
the domain and equations into a rectangular domain. For detepexplanation and examples
of Gordon-Hall transformation ses, 7]. It should be noted that a great advantage of using
Gordon-Hall map and pseudo-spectral method is that theocation points always lie on the
interface and two neighboring domains share the same noddbebinterface, regardless of
interface shape.

4. NUMERICAL RESULTS

In this section, we first give an example defined on rectanglaain with straight line
interface as in KSURE 1. And then we present some examples defined on more conaplicat
domain which make us use pseudo-spectral element methadveoteem. Denote by the
discrete solution of problem and lay= v — vy, the errors fow € {uy, u2, p}. We present
their L2 () and () discrete norm of error which is defined, respectively, aefas:

HeHw N = Z Wi € x” He”iw,N = HVﬁﬂi,N + H€H%U,N
i,j=0

Example 1 (Straight line interface) Consider the Stokes interface problem with the following
exact solution

= { £ o) st (o
T %aj?’y + exp(y) +sin(my), (z,y) € 27,
B —Layt + cos(rz), (x,y) € QF,
us(z,y) = { _925252 + cos(mz), (x,z) €,
o w2( - 1)7 ( ) SRY)
p(%y)—{ (ygl)f‘i, (x, )EQ

whereQ* = [—1,0] x [0,2], Q= =[0,1] x [0,2] andT" = {0} x [0, 2]. The singular source
termg = [vVu-n — p - n|p is given by using the above solutions.

The errors inL2 and H -norm discretization for Legendre and Chebyshev apprakima
are given in Tables 1 and 2, respectively, which show the mapital rate of convergence with
respect taV regardless of discontinuous viscosity and singular solace.
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TABLE 1. Error discretization of Example 1 witht = 1 andv~ = 5 for
Legendre case.

U1 U2 p
N lell 2 lell 2 lellz2 llell 1 lell 2 llell e
6  9.3152e-04 7.9018e-03 1.5884e-03 1.1424e-02 1.6454e-84110e-01
10 8.3228e-08 4.8696e-07 1.4383e-07 9.0609e-07 9.3467e-0.5888e-05
14 1.5397e-12 9.5044e-12 2.6967e-12 1.7453e-11  9.1089e-2.5590e-09
18 2.6239%e-14  3.9698e-13 1.9463e-14 6.6407e-13 1.07/26e-0.2253e-09
TABLE 2. Error discretization of Example 1 witht = 1 andv~ = 5 for
Chebyshev case.
U1 U2 p
el 2 lell 2 lefl 2 llell e el 2 llell 1
6  1.0644e-03 1.6923e-02 1.5043e-03 1.6272e-02 3.0275e-DD536e-01
10 4.6437e-08 1.5634e-06 9.6710e-08 1.0340e-06 3.6578e-P.0598e-04
14  6.5587e-13 3.1726e-11  1.5445e-12 2.0782e-11 2.7876e-0.1828e-08
18 1.8977e-13  2.0595e-11 2.6345e-13 4.2578e-11 1.58%2e-5.0606e-08

The exact solution, approximate solution and the error eégure for Legendre case of this
example are plotted inIBURE 2.

Example2. Letthe domairf2 be2 = [—1, 1] x[—1, 1] and the interface curve b&?+y* = 1.
The decomposition of domainis given inFIGURE 3. The exact solutions are

L E, if  r>r,
Ui (‘Tay) = r o
0, it r <,
r oz .
—=+—, if  r>rg,
UQ(way) = r "o
0, if r<nrg,
cos(mx) cos(my), If  r>ro,
p(z,y) = :
0, if  r<nr,

whererg = 1, andr = /(22 + 2).

We note that along dashed line common sides, the condifwns= 0, YVu-n —p -
n] = 0 hold. The errors inL2 and H.-norm discretization for Legendre and Chebyshev
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exact solution of p approximate solution of p error of p

0‘0:1‘?}‘: \\\\‘
G
a4

f2ese
N !
0""',/“0

’Q"/// L

()
\ " “' {

approximation are given in Tables 3 and 4, respectivelycivshow the spectral convergence
of the proposed algorithm. The exact solution, approxinsatation and the error of pressure

FIGURE 2. Exact and approximate solutions, and its error of pressurV =
18 of Example 1.

for Legendre case of this example are plotted i@URE 4.

TABLE 3. Error discretization of Example 2 for Legenre case, with= 0.1.

Uy U2 p

N lell 2 llell lell 2 llell llell 2 [lel] g1

6 1.1195e-01 3.4194e+00 1.0728e-01 2.2860e+00 6.1792eD2231e+01
10 1.9327e-05 1.0323e-04 1.9193e-05 1.4186e-04 2.3256e-6.5461e-04
14 9.3725e-07 5.1590e-06 8.9838e-07 5.5775e-06 1.86®6e-0.4162e-04
18 1.4382e-08 1.2166e-07 1.8357e-08 1.2493e-07 5.568B2e-B.5863e-06
22 3.5617e-10 2.3544e-09 4.0336e-10 2.7923e-09 2.4732e-8.3634e-08
26 1.3608e-11 6.9920e-11  1.3506e-11 8.2877e-11  5.29%4e-1.4156e-09
30 2.9087e-13 1.9949e-12  3.1573e-13  2.1529e-12  1.5080e-1.5746e-10
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TABLE 4. Error discretization of Example 2 for Chebychev casehwit = 0.1.

ui u2 p
lell 2 lel g1 lell 2 lel g1 lell 2 lellz
6 5.7439e-02 2.0566e+00 6.4792e-02 1.5999e+00 5.0340e&0266e+00
10 1.4296e-05 2.7028e-04 1.3009e-05 3.5747e-04 1.26B2e-B.1796e-03
14 2.6209e-07 2.6194e-06 2.4317e-07 4.4447e-06 1.6483e-0.7272e-04
18 7.2807e-09 5.3576e-08 6.1460e-09 1.0181e-07 5.04b4e-P.9558e-06
22 1.6049e-10 1.4202e-09 1.4739%e-10 2.7203e-09 1.9287e-0.2404e-07
26 4.5497e-12 4.1539%e-11 4.0185e-12 8.5765e-11 9.3411e-6.2526e-09
30 1.5859e-13 1.6333e-12 1.4411e-13 2.8550e-12 4.2261e-2.9465e-10

FIGURE 3. Schematic of domaif, interfacel’ and its decomposition for
Stokes interface problems in Examples 2 to 4.

Example 3. We consider an example with smooth velocity and disconismpoessure across
interface wherd) = [—2, 2] x [-2, 2] and the interface curve is the unit circle, i.e?+y? =
1. The decomposition of domalis given inFIGURE 3. The exact solutions are

119

{ uy(z,y) =y@@® +y*—1), (z,y) €Q,
up(z,y) = —z(2® +y* — 1), (z,y) € Q,
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exact solution of p approximate solution of p

error of p

-1 1 -1 -1

FIGURE 4. Exact and approximate solutions, and its error of pressurN =
18 of Example 2.

1, (z,y)eQ,

xT,y) =
piz:) 0, (z,y)ecr.

The errors inL2 and H}-norm discretization for Legendre and Chebyshev are given i

Tables 5 and 6, respectively, which are evidence of exp@lemnvergence of the given algo-
rithm.

Example 4. We consider the previous example with the same exact solinside the unit
circle, but the solutions are set to be zero outside the urdlec That is

y(x2+y2_1)7 ($7y) GQ_v

ui(z,y) =
=9, (z,y) € O,
U (.’1’ ) _ —$(3§‘2+y2—1), ($7y) GQ_)
R ) (z,y) € O,
(x ) _ 17 ($7y) G Q_7
Peey 0, (z,y)e Q.

The errors inL2 and H/-norm discretization for Legendre and Chebyshev are given i
Tables 7 and 8, respectively, which spectral accuracy gbtbposed method is evident. Exact
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TABLE 5. Error discretization of Example 3 for Legenre case, with =

0.5, v~ =1.
U1 U2 p

N llell 2 llell 1 lell 2 llell 1 lell 2 [lell 2
6 1.1024e-02 1.4136e-01 1.7768e-02 1.0353e-01 1.3103e-DB335e+00
10 1.3774e-04 1.5536e-03 1.3028e-04 1.0648e-03 1.97%1le-0.6296e-02
14 3.8301e-05 5.0922e-04 2.9098e-05 3.2607e-04 6.1366e-0.7891e-03
18 1.7160e-07 1.2512e-06 1.6626e-07 1.1818e-06 2.2655e-0.4578e-04
22 5.0688e-09 1.6974e-08 4.8894e-09 1.7565e-08 5.8622e-0.6011e-05
26 1.4857e-10 4.1623e-10 1.4310e-10 4.2503e-10 8.073e-2.2968e-07
30 3.9334e-12 1.3770e-11  3.7632e-12 1.3742e-11 5.42D4e-2.7457e-08

TABLE 6. Error discretization of Example 3 for Chebychev casehwit =

0.5,v— =1.

Ul U2 b

llell 2 llell lell 2 el llell 2 [lel] g1
6  1.5591e-02 2.5490e-01 1.7150e-02 1.9448e-01 4.6610e-05766e+00
10 1.0044e-04 4.0661e-03 1.0708e-04 2.6273e-03 4.52861e-08.9413e-01
14 3.8558e-05 1.1569e-03 2.1640e-05 8.5232e-04 2.39%0e-0.0950e-02
18 8.0707e-08 5.6921e-07 7.2241e-08 6.8517e-07 9.1179e-0.4338e-04
22 2.0965e-09 1.5632e-08 1.8385e-09 1.6902e-08 2.8487e-0.5045e-05
26 5.6011e-11 3.8507e-10 4.8409e-11 4.4236e-10 7.3627e-0.2421e-07
30 1.8581e-12 3.4346e-11 1.6809e-12 7.4142e-11 7.5522e-8.6789e-08

solution, approximate solution and the error of veloaityfor N = 18 of this example is
plotted iNFIGURE 5.

5. CONCLUDING REMARKS

In this paper, we proposed pseudo-spectral method for Stakablem with discontinuous
viscosity and singular source term. First, we derived fater conditions and Stokes equations
defined on each sub-domain. The interface conditions arencatly of velocity and coupled
interface condition for velocity and pressure. By usingydhkese two interface conditions we
derive spectral accuracy. Then we obtain a simple and efficlkgorithm applying pseudo-
spectral method to each equation. It is shown that the pesposethod can be applied to
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FIGURE 5. Exact and approximate solutions, and its error of vejogit for
N = 18 of Example 4.

TABLE 7. Error discretization of Example 4 for Legenre case, with =

0.5, v~ =1.
U1 U2 p

N lell 2 lell 2 lell 2 llell e lell 2 llell e

6 3.1170e-03  1.9393e-02 2.1546e-03 1.8157e-02 1.7510e-P33039e-01
10 8.5050e-05 4.9167e-04 7.1075e-05 4.1782e-04 6.9648e-5.6093e-02
14 7.0110e-07 1.0418e-05 1.0630e-06 8.4465e-06 1.2194e-0.7288e-03
18 2.1192e-08 1.2786e-07 3.4959e-08 1.6806e-07 1.57B2e-P.3705e-05
22 2.1774e-09 3.5515e-08 3.2506e-09 3.6317e-08 5.4532e-0.5405e-05
26  4.0290e-11 4.1343e-10 4.5607e-11  4.7347e-10 1.03B6e-0.8868e-07
30 1.4386e-12 5.2650e-11 2.3657e-12 4.8110e-11  8.20%3e-P.3467e-08

Stokes interface problem defined on curved domain by usirrgd@ioand Hall transformation.
This means that the method can be extended to pseudo-$mdetn@nt method to solve Stokes
interface problems defined on complicated domain. The nigalegxperiments also showed
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TABLE 8. Error discretization of Example 4 for Chebychev casehwit =

0.5, v =1.
U1 U2 p

N lell 2 lell 2 lell 2 llell 1 lell 2 llell e

6 4.0280e-03 3.6396e-02 2.6758e-03 3.8719e-02 2.6615e-08940e-01
10 2.2951e-05 3.6981e-04 2.9940e-05 4.0711e-04 3.8221e-5.9888e-02
14 4.7602e-07 4.1613e-05 6.9575e-07 3.0613e-05 5.1888e-9.5297e-03
18 9.9876e-09 2.9337e-07 1.6508e-08 3.5445e-07 4.3810e-0.0009e-04
22 2.3777e-10 7.5238e-09 3.4763e-10 7.8269e-09 9.6076e-8.0175e-06
26 7.1970e-12 4.9720e-10 1.0349e-11 5.4790e-10 1.6638e-P.3394e-07
30 5.7495e-13 5.4610e-11  7.3574e-13 1.0336e-10 1.01®6e-8.5471e-08

that the method has the spectral convergence high accuracthermore the method can be
adopted to solve other interface problems such as NavikeStinterface problems.
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