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A GENERAL ITERATIVE ALGORITHM COMBINING

VISCOSITY METHOD WITH PARALLEL METHOD FOR

MIXED EQUILIBRIUM PROBLEMS FOR A FAMILY OF

STRICT PSEUDO-CONTRACTIONS†
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Abstract. The purpose of this paper is to introduce a general iterative
process by viscosity approximation method with parallel method to ap-
proximate a common element of the set of solutions of a mixed equilib-
rium problem and of the set of common fixed points of a finite family of
ki-strict pseudo-contractions in a Hilbert space. We obtain a strong con-
vergence theorem of the proposed iterative method for a finite family of
ki-strict pseudo-contractions to the unique solution of variational inequal-
ity which is the optimality condition for a minimization problem under
some mild conditions imposed on parameters. The results obtained in this
paper improve and extend the corresponding results announced by Liu
(2009), Plubtieng-Panpaeng (2007), Takahashi-Takahashi (2007), Peng et
al. (2009) and some well-known results in the literature.
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1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space
with inner product 〈., .〉 and norm ‖.‖, respectively, and C is a nonempty closed
convex subset of H. Recall that a mapping T : C → H is said to be k-strictly
pseudo-contractive if there exists a constant k ∈ (0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C, (1)

where I is an identity operator. We use F (T ) to denote the set of fixed points of
T . Note that the class of k-strictly pseudo-contractive includes strictly the class
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of nonexpansive mappings which are mappings T on C such that ‖Tx− Ty‖ ≤
‖x − y‖, ∀x, y ∈ C. This is, T is nonexpansive if and only if T is 0-strictly
pseudo-contraction. The mapping T is also said to be pseudo-contraction if
k = 1 and T is said to be strongly pseudo-contraction if there exists a positive
constant λ ∈ (0, 1) such that T − λI is pseudo-contraction. Clearly, the class of
k-strictly pseudo-contractions falls into the one between classes of nonexpansive
mappings and pseudo-contractions. We also remark that the class of strongly
pseudo-contractions is independent of the class of k-strictly pseudo-contractions
(see [3]).

Let ϕ : C → R∪ {+∞} be a proper extended real-valued function and F be
a bifunction of C ×C into R, where R is the set of real numbers. Flores-Bazán
[1] considered the following mixed equilibrium problem for finding x ∈ C such
that

F (x, y) + ϕ(y) ≥ ϕ(x) for all y ∈ C. (2)

The set of solutions of (2) is denoted by MEP (F,ϕ). We see that x is a solution
of problem (2) implies that x ∈ domϕ = {x ∈ C | ϕ(x) < +∞}. If ϕ ≡ 0, then
the mixed equilibrium problem (2) becomes the following equilibrium problem:
to find x ∈ C such that

F (x, y) ≥ 0 for all y ∈ C. (3)

The set of solutions of (3) is denoted by EP (F ). Given a mapping B : C → H,
let F (x, y) = 〈Bx, y − x〉 for all x, y ∈ C. Then, z ∈ EP (F ) if and only if
〈Bz, y − z〉 ≥ 0 for all y ∈ C. Some methods have been proposed to solve the
equilibrium problem (see [2, 7, 8, 10, 11, 18, 19, 23]). The problem (3) is very
general in the sense that it includes, as special cases, optimization problems,
variational inequalities, minimax problems, Nash equilibrium problem in non-
cooperative games and others; see, for instance, [1, 2, 8]. In 2005, Combettes
and Hirstoaga [8] introduced an iterative scheme of finding the best approxima-
tion to the initial data when EP (F ) is nonempty and they also proved a strong
convergence theorem. Let A : C → H be a mapping. The classical variational
inequality, denoted by V I(C,A), is to find x∗ ∈ C such that 〈Ax∗, v − x∗〉 ≥ 0
for all v ∈ C. The variational inequality has been extensively studied in the
literature. See, e.g. [2, 9, 12, 25, 29] and the references therein. In 2008, Ceng
and Yao [7] considered an iterative scheme for finding a common fixed point of a
finite family of nonexpansive mappings and the set of solutions of a problem (2)
in Hilbert spaces and obtained the strong convergence theorem. Let K : C → R
be a differentiable functional on a convex set C, which used the following con-
dition (see [7]):

(H) K : C → R is η-strongly convex with constant σ > 0 and its derivative
K ′ is sequentially continuous from the weak topology to the strong topology.
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Their results extend and improve the corresponding results in [8, 20]. We
note that the condition (H) for the function K : C → R is a very strong condi-

tion. We also note that the condition (H) does not cover the case K(x) = ‖x‖2

2
and η(x, y) = x − y for each (x, y) ∈ C × C. Motivated by Ceng and Yao [7],
Peng and Yao [23] introduced a new iterative scheme based on only the extra-
gradient method for finding a common element of the set of solutions of a mixed
equilibrium problem, the set of fixed points of a family of finitely nonexpan-
sive mappings and the set of the variational inequality for a monotone Lipschitz
continuous mapping. They obtained a strong convergence theorem without the
condition (H) for the sequences generated by these processes.

A mapping A of C into H is called α-inverse-strongly monotone [5] if there
exists a positive real number α such that 〈Au − Av, u − v〉 ≥ α‖Au − Av‖2 for
all u, v ∈ C. Let A be a strongly positive bounded linear operator on H: that
is, there is a constant γ > 0 with property

〈Ax, x〉 ≥ γ‖x‖2 for all x ∈ H. (4)

A typical problem is to minimize a quadratic function over the set of the fixed
points of a nonexpansive mapping on a real Hilbert space H:

min
x∈C

1

2
〈Ax, x〉 − 〈b, x〉, (5)

where C is the fixed point set of a nonexpansive mapping T on H and b is a
given point in H.

In 2007, S. Takahashi and W. Takahashi [18] introduced an iterative scheme
by the viscosity approximation method for finding a common element of the
set of solution (3) and the set of fixed points of a nonexpansive mapping in
a Hilbert space. Let S : C → C be a nonexpansive mapping. Starting with
arbitrary initial x1 ∈ H and un ∈ C define sequences {xn} and {un} recursively
by

F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)Sun, ∀n ∈ N. (6)

They proved that under certain appropriate conditions imposed on {αn} and
{rn}, the sequences {xn} and {un} converge strongly to z ∈ F (S) ∩ EP (F ),
where z = PF (S)∩EP (F )f(z). Later, Plubtieng and Punpaeng [16] introduced an
iterative scheme by the general iterative method for finding a common element
of the set of solution (3) and the set of fixed points of a nonexpansive mapping
in Hilbert space. Let S : H → H be a nonexpansive mapping. Starting with an
arbitrary x1 ∈ H and un ∈ C define sequences {xn} and {un} by

F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnγf(xn) + (I − αnA)Sun, ∀n ∈ N, (7)
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where A is strong positive bounded linear operators. They proved that if the
sequences {αn} and {rn} of parameters satisfies appropriate conditions, then
{xn} generate by (7) converges strongly to the unique solution of variational
inequality 〈(A−γf)z, x− z〉 ≥ 0, ∀x ∈ F (S)∩EP (F ), which is the optimality
condition for the minimization problem

min
x∈F (S)∩EP (F )

1

2
〈Ax, x〉 − h(x), (8)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
For finding a common element of the set of fixed points of a k-strictly pseudo-

contraction and the set of solutions of an equilibrium problem in a real Hilbert
space, very recently, by idea of Plubtieng-Punpaeng [16], Liu [14] introduced the
following iterative scheme:

F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ E,

yn = βnun + (1− βn)Sun,

xn+1 = εnγf(xn) + (I − εnA)yn, ∀n ≥ 1, (9)

where S is a k-strictly pseudo-contraction and {εn}, {βn} are sequences in [0, 1].
They proved that under certain appropriate conditions over {εn}, {βn} and {rn},
the sequences {xn} and {un} both converge strongly to some q ∈ F (S)∩EP (F ),
which solves some variational inequality problems.

Very recently, Ceng et al. [6] and Peng et al. [22] established an iterative
scheme for finding a common element of the set of solution of equilibrium prob-
lems (generalized and mixed equilibrium problems) and the set of fixed point
of a k-strictly pseudo-contraction in the setting of a real Hilbert space. They
also studied some weak and strong convergence theorem for k-strictly pseudo-
contraction of the sequence generated by their algorithm under the control con-
ditions. Many authors studied the problem to finding a common element of
the set of fixed points and the set of solutions of an equilibrium problem for
strictly pseudo-contractions in the frame work of Hilbert spaces; see, for in-
stance, [6, 13, 14, 21, 22, 24, 25] and the references therein.

Motivated by Peng et al. [22], Plubtieng-Punpaeng [16] and Takahashi-
Takahashi [19], we introduce an iterative scheme by combining the viscosity
method with parallel method for finding a common element of the set of solu-
tion (2) and the set of fixed points of a finite family of strictly pseudo contractive
mappings in a Hilbert space. Moreover, our results include Liu [14], Plubtieng-
Panpaeng [16], Takahashi-Takahashi [18], Takahashi-Takahashi [19], Peng et al.
[22] and some others as some special cases.

2. Preliminary

Let C be closed convex subset of a Hilbert space H, let PC be the metric
projection of H onto C i.e., for x ∈ H, PCx satisfies the property ‖x− PCx‖ =
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miny∈C ‖x−y‖. It is well known that PC is a nonexpansive mapping. Moreover,
PCx is characterized by the following properties: PCx ∈ C and

〈x− PCx, y − PCx〉 ≤ 0, (10)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 for all x ∈ H, y ∈ C. (11)

In the context of the variational inequality problem, this implies that

u ∈ V I(C,A) ⇔ u = PC(u− λAu), for all λ > 0. (12)

Let H be a real Hilbert space. Then for any x, y ∈ H, we have the following:
(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉
(ii) ‖x+ y‖2 ≥ ‖x‖2 + 2〈y, x〉
(iii) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, ∀t ∈ [0, 1].
It is also known thatH satisfies the Opial’s condition, that is, for any sequence

{xn} with xn ⇀ x, the inequality lim infn→∞ ‖xn − x‖ < lim infn→∞ ‖xn − y‖
holds for every y ∈ H with y 6= x.

In order to prove our main results, we need the following lemmas.

Lemma 1. [30] Let T : C → H be a k-strictly pseudo-contraction. Defined
S : C → H by Sx = λx+ (1− λ)Tx for each x ∈ K. Then, as λ ∈ [k, 1), S is a
nonexpansive mapping such that F (S) = F (T ).

Lemma 2. [26] Let {an} be a sequence of nonnegative real numbers, satisfying
the property, an+1 ≤ (1 − γn)an + bn, n ≥ 0, where {γn} ⊂ (0, 1), and {bn}
is a sequence in R such that: (C1) Σ∞

n=1γn = ∞; (C2) lim supn→∞
bn
γn

≤ 0 or

Σ∞
n=1|bn| < ∞. Then limn→∞ an = 0.

Lemma 3. [17] Let {xn} and {yn} be bounded sequences in a Banach space X
and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn <
1. Suppose xn+1 = (1−βn)yn+βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1−
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 4. [15] Let H be a Hilbert space. Let A be a strongly positive linear

bounded selfadjoint operator with coefficient γ > 0. Assume that 0 < γ < γ
α . Let

T : H → H be a nonexpansive mapping with a fixed point xt of the contraction
x 7→ tγf(x)+(1− tA)Tx. Then {xt} converges strongly as t → 0 to a fixed point
x∗ os T , which solve the variational inequality 〈(A− γf)x∗, z − x∗〉 ≥ 0, ∀z ∈
F (T ).

Lemma 5. [15] Let H be a Hilbert space, C be a nonempty closed convex subset
of H, and f : H → H be a contraction with coefficient 0 < α < 1, and A be
a strongly positive linear bounded operator with coefficient γ > 0. Then, for
0 < γ < γ

α , 〈x − y, (A − γf)x − A(A − γf)y〉 ≥ (γ − γα)‖x − y‖2, x, y ∈ H.
That is, A− γf is strongly monotone with coefficient γ − γα.

Lemma 6. [15] Assume A is a strongly positive linear bounded operator on a
Hilbert space H with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤
1− ργ.
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Lemma 7. [28] Let H be a Hilbert space, C a nonempty closed convex subset
of H. For any integer N ≥ 1, assume that, for each 1 ≤ i ≤ N , Ti : C → H
be ki-strictly pseudo-contractions for some 0 ≤ ki < 1. Assume that {ηi}Ni=1 is
a positive sequence such that ΣN

i=1ηi = 1. Then ΣN
i=1ηiTi is a non-self-k-strictly

pseudo-contraction with k = max{ki : 1 ≤ i ≤ N}.
Lemma 8. [28] Let {Ti}Ni=1 and {ηi}Ni=1 be given as in Lemma 7. Suppose that
{Ti}Ni=1 has a common fixed point in C. Then F (ΣN

i=1ηiTi) = ∩∞
i=1F (Ti).

For solving the mixed equilibrium problem, let us give the following assump-
tions for the bifunction F, ϕ and the set C :

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each y ∈ C, x 7→ F (x, y) is weakly upper semicontinuous.
(A4) for each x ∈ C, y 7→ F (x, y) is convex;
(A5) for each x ∈ C, y 7→ F (x, y) is lower semicontinuous;

We need the following two conditions for the following lemma (see
[22, 23] for more details):

(B1) for each x ∈ H and r > 0, there exist abounded subset Dx ⊆ C and
yx ∈ C such that for any z ∈ C \Dx,

F (z, yx) + ϕ(yx) +
1

r
〈yx − z, z − x〉 < ϕ(z);

(B2) C is a bounded set.

Lemma 9. ([21, 23]; see also [22, 24]) Let C be a nonempty closed convex
subset of H. Let F : C × C → R be a bifunction satisfies (A1)-(A4) and let
ϕ : C → R∪ {+∞} be a proper lower semicontinuous and convex function. For
r > 0 and x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : F (z, y) + ϕ(y) +
1

r
〈y − z, z − x〉 ≥ ϕ(z), ∀y ∈ C}

for all z ∈ H. Assume that either (B1) or (B2) holds. Then, the following
conclusions hold:

(1) For each x ∈ H,Tr(x) 6= ∅;
(2) Tr is single-valued;
(3) Tr is firmly nonexpansive, i.e., for any x, y ∈ H, ‖Trx−Try‖2 ≤ 〈Trx−

Try, x− y〉;
(4) F (Tr) = MEP (F,ϕ);
(5) MEP (F,ϕ) is closed and convex.

Remark We note that Lemma 9 is not a consequence of Lemma 3.1 in [1]
because the condition of the sequential continuity from the weak topology to the
strong topology for the derivative K ′ of the function K : C → R does not cover

the case K(x) = ‖x‖2

2 .
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3. Strong convergence theorem

In this section, we prove a strong convergence theorem of the iterative scheme

(13) below to a common element ofMEP (F,ϕ) and
⋂N

i=1 F (Ti) for a finite family
of ki-strictly pseudo-contractions in the framework of Hilbert spaces.

Theorem 1. Let H be a real Hilbert space, C a nonempty closed convex subset
of H. Let F : C × C → R be a bifunction satisfying (A1)-(A5) and let ϕ :
C → R ∪ {+∞} be a proper lower semicontinuous and convex function such
that C ∩ domϕ 6= ∅. Let Ti : C → C be a ki-strict pseudo-contraction for

some 0 ≤ ki < 1 such that Θ :=
⋂N

i=1 F (Ti) ∩ MEP (F,ϕ) 6= ∅ and let f be a
contraction of H into itself with coefficient α ∈ (0, 1). Assume that for each n,

{η(n)i }Ni=1 is a finite sequence of positive number such that ΣN
i=1η

(n)
i = 1 for all

n and η
(n)
i > 0 for all 1 ≤ i < N. Let k = max{ki : 1 ≤ i ≤ N}. Assume that

either (B1) or (B2) holds. Let A be a strongly positive bounded linear operator

with coefficient γ > 0 and 0 < γ < γ
α . Starting with an arbitrary x1 ∈ H,un ∈ C

and define the sequences {xn} and {un} by

F (un, y) + ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C

yn = γnun + (1− γn)Σ
N
i=1η

(n)
i Tiun

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)yn, (13)

where {αn}, {βn}, {γn} ⊂ [0, 1] and {rn} ⊂ (0,∞). If the sequences {αn}, {βn},
{γn} and {rn} satisfies the following conditions:

(C1) limn→∞ αn = 0 and Σ∞
n=1αn = ∞,

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(C3) lim infn→∞ rn > 0 and limn→∞ |rn+1 − rn| = 0,

(C4) limn→∞ |η(n+1)
i − η

(n)
i | = 0, for all i = 1, 2, 3, ..., N ,

(C5) k ≤ a < γn < b ≤ 1 and limn→∞ |γn+1 − γn| = 0, for some a, b ∈ R.
Then {xn} and {un} converge strongly to z, where z = PΘ(I −A+ γf)z, which
solves the unique solution of the variational inequalities (14), i.e.,

〈(A− γf)z, x− z〉 ≥ 0, ∀x ∈ Θ, (14)

which is the optimality condition for the minimization problem (8).

Proof. Note that by Lemma 9, un can be rewritten as un = Trnxn for each
n ∈ N. Let p ∈ Θ, then p = Trnp. For any n ∈ N, by nonexpansiveness of Trn ,
we have

‖un − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖.
From the condition limn→∞ αn = 0, we may assume, without loss of generality,
that αn ≤ (1−βn)‖A‖−1. Since A is a strongly positive bounded linear operator
on H, then ‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}. Observe that

〈((1− βn)I − αnA)x, x〉 = 1− βn − αn〈Ax, x〉 ≥ 1− βn − αn‖A‖ ≥ 0,
that is to say (1− βn)I − αnA is positive. It follows that
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‖(1− βn)I − αnA‖ = sup{〈((1− βn)I − αnA)x, x〉 : x ∈ H, ‖x‖ = 1}
= sup{1− βn − αn〈Ax, x〉 : x ∈ H, ‖x‖ = 1}
≤ 1− βn − αnγ.

We now show that {xn} is bounded. Indeed pick any p ∈ Θ, we define a
mapping Sn by

Snx = ΣN
i=1η

(n)
i Tix, ∀x ∈ C.

From Lemma 7, each Sn is a k-strict pseudo-contraction on C and by Lemma 8,
F (Sn) = ∩N

i=1F (Ti). It follows that

‖yn − p‖2 = ‖γnun + (1− γn)Snun − p‖2
= ‖γn(un − p) + (1− γn)(Snun − p)‖2
= γn‖un − p‖2 + (1− γn)‖Snun − p‖2 − γn(1− γn)‖un − Snun‖2
≤ γn‖un − p‖2 + (1− γn)[‖un − p‖2 + k‖un − Snun‖2]

−γn(1− γn)‖un − Snun‖2
= ‖un − p‖2 + (1− γn)(k − γn)‖un − Snun‖2 ≤ ‖un − p‖2,

it follows that ‖yn − p‖ ≤ ‖un − p‖. We observe that

‖xn+1 − p‖ = ‖αnγf(xn) + βnxn + ((1− βn)I − αnA)yn − p‖
= ‖αn(γf(xn)−Ap) + βn(xn − p) + ((1− βn)I − αnA)(yn − p)‖
≤ ‖αn(γf(xn)−Ap)‖+ βn‖xn − p‖

+‖((1− βn)I − αnA)‖‖yn − p‖
≤ ‖αn(γf(xn)− γf(p) + γf(p)−Ap)‖+ βn‖xn − p‖

+(1− βn − αnγ)‖‖un − p‖
≤ αnγα‖xn − p‖+ αn‖γf(p)−Ap‖+ βn‖xn − p‖

+(1− βn − αnγ)‖‖xn − p‖
= (1− αn(γ − γα))‖xn − p‖+ αn‖γf(p)−Ap‖
= (1− αn(γ − γα))‖xn − p‖+ αn(γ − γα)

‖γf(p)−Ap‖
(γ − γα)

.

By induction that ‖xn−p‖ ≤ max{‖x1−p‖, ‖γf(p)−Ap‖
(γ−γα) }, n ≥ 0, and hence {xn}

is bounded. We also obtain that {un}, {f(xn)} and {yn} are also bounded.
Define the mapping Vn : C → C by Vn = γnI + (1− γn)Sn, for any x, y ∈ C, we
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have

‖Vnx− Vny‖2 = ‖γnx+ (1− γn)Snx− (γny + (1− γn)Sny)‖2
= γn‖x− y‖2 + (1− γn)‖Snx− Sny‖2

−γn(1− γn)‖(I − Sn)x− (I − Sn)y‖2
≤ γn‖x− y‖2 + (1− γn)[‖x− y‖2

+k‖(I − Sn)x− (I − Sn)y‖2]
−γn(1− γn)‖(I − Sn)x− (I − Sn)y‖2

= ‖x− y‖2 + (1− γn)(k − γn)‖(I − Sn)x− (I − Sn)y‖2
≤ ‖x− y‖2,

which implies that Vn is nonexpansive. We compute

‖yn+1 − yn‖ = ‖Vn+1un+1 − Vnun‖
≤ ‖Vn+1un+1 − Vn+1un‖+ ‖Vn+1un − Vnun‖
≤ ‖un+1 − un‖+ ‖γn+1un + (1− γn+1)Sn+1un

−(γnun + (1− γn)Snun)‖
≤ ‖un+1 − un‖+ ‖γn+1un + (1− γn+1)Sn+1un

−(1− γn+1)Snun + (1− γn+1)Snun

−(γnun + (1− γn)Snun)‖
≤ ‖un+1 − un‖+ ‖(γn+1 − γn)un

+[(1− γn+1)− (1− γn)]Snun‖
+‖(1− γn+1)(Sn+1un − Snun)‖

≤ ‖un+1 − un‖+ |γn+1 − γn|‖un − Snun‖
+(1− γn+1)‖Sn+1un − Snun‖

≤ ‖un+1 − un‖+ |γn+1 − γn|M1

+(1− γn+1)Σ
N
i=1|η(n+1)

i − η
(n)
i |‖Tiun‖ (15)

where M1 = sup{‖un − Snun‖ : n ∈ N}. Observing that un = Trnxn ∈ dom ϕ
and un+1 = Trn+1xn+1 ∈ dom ϕ, we get

F (un, y) + ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C, (16)

F (un+1, y) + ϕ(y)− ϕ(un+1) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0, ∀y ∈ C.

(17)

Take y = un+1 in (16) and y = un in (17), by using condition (A2), we obtain

〈un+1 − un,
un − xn

rn
− un+1 − xn+1

rn+1
〉 ≥ 0.

Thus 〈un+1−un, un−un+1+xn+1−xn+(1− rn
rn+1

)(un+1−xn+1)〉 ≥ 0. Without

loss of generality, let us assume that there exists a real number c such that
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rn > c, ∀n ≥ 1. Then, we have

‖un+1 − un‖2 ≤ ‖un+1 − un‖
{
‖xn+1 − xn‖+ |1− rn

rn+1
|‖un+1 − xn+1‖

}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+ 1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+ 1

c
|rn+1 − rn|M2, (18)

where M2 = sup{‖un − xn‖ : n ∈ N}. Substituting (18) into (15), we arrive at

‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖+ dn (19)

where dn := 1
c |rn+1−rn|M2+|γn+1−γn|M1+(1−γn+1)Σ

N
i=1|η(n+1)

i −η
(n)
i |‖Tiun‖.

Next, we show that ‖xn+1 − xn‖ → 0. Define the sequence {wn} such that

xn+1 = βnxn + (1− βn)wn, n ≥ 0.

Observe that from the definition of wn we obtain

wn+1 − wn =
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn

=
αn+1γf(xn+1) + ((1− βn+1)I − αn+1A)yn+1

1− βn+1

− αnγf(xn) + ((1− βn)I − αnA)yn
1− βn

=
αn+1

1− βn+1
(γf(xn+1)−Ayn+1)

+
αn

1− βn
(Ayn − γf(xn)) + yn+1 − yn.

Thus,

‖wn+1 − wn‖ − ‖xn − xn+1‖ ≤ αn+1

1− βn+1
‖γf(xn+1)−Ayn+1‖

+
αn

1− βn
‖Ayn − γf(xn)‖+ ‖yn+1 − yn‖

−‖xn − xn+1‖
≤ αn+1

1− βn+1
‖γf(xn+1)−Avn+1‖

+
αn

1− βn
‖Avn − γf(xn)‖+ dn.

By the conditions (C1)-(C5) and taking the limit superior that

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0. (20)

From 0 < lim infn→∞ βn ≤ lim supn→∞ < 1, Lemma 3 and (20), we have

lim
n→∞

‖wn − xn‖ = 0. (21)
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Note that ‖xn+1 − xn‖ = ‖(1 − βn)wn + βnxn − xn‖ = (1 − βn)‖wn − xn‖, by
(21), we get

lim
n→∞

‖xn+1 − xn‖ = 0, (22)

applying (C2)-(C5) in (18) and (19), we obtain limn→∞ ‖un+1 − un‖ = 0 and
limn→∞ ‖yn+1 − yn‖ = 0.
Next, we show that limn→∞ ‖xn − un‖ = 0. For any p ∈ Θ, we have

‖un − p‖2 = ‖Trnxn − Trnp‖2 ≤ 〈Trnxn − Trnp, xn − p〉 = 〈un − p, xn − p〉
=

1

2
(‖un − p‖2 + ‖xn − p‖2 − ‖un − xn‖2).

It follow that ‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2. Therefore, we have

‖xn+1 − p‖2 = ‖αnγf(xn) + βnxn + ((1− βn)I − αnA)yn − p‖2
= ‖αn(γf(xn)−Ap) + βn(xn − p)

+((1− βn)I − αnA)(yn − p)‖2
≤ αn‖γf(xn)−Ap‖2 + βn‖xn − p‖2

+(1− βn − αnγ̄)‖yn − p‖2
≤ αn‖γf(xn)−Ap‖2 + βn‖xn − p‖2

+(1− βn − αnγ̄)‖un − p‖2
≤ αn‖γf(xn)−Ap‖2 + βn‖xn − p‖2

+(1− βn − αnγ̄)(‖xn − p‖2 − ‖xn − un‖2)
= αn‖γf(xn)−Ap‖2 + (1− αnγ̄)‖xn − p‖2

−(1− βn − αnγ̄)‖un − xn‖2.
It follows that

(1− βn − αnγ̄)‖un − xn‖2 ≤ αn‖γf(xn)−Ap‖2
+(1− αnγ̄)‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖γf(xn)−Ap‖2
+‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖).

By (C1), (C2) and (22), imply that

lim
n→∞

‖un − xn‖ = 0. (23)

Since lim infn→∞ rn > 0, we have limn→∞ ‖xn−un

rn
‖ = limn→∞ 1

rn
‖xn − un‖ = 0.

Next, we prove that limn→∞ ‖Snun − un‖ = 0. We consider

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖
= ‖xn − xn+1‖+ ‖αnγf(xn) + βnxn + ((1− βn)I − αnA)yn − yn‖
≤ ‖xn − xn+1‖+ αn‖γf(xn)−Ayn‖+ βn‖xn − yn‖,
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it follows that (1−βn)‖xn−yn‖ ≤ ‖xn−xn+1‖+αn‖γf(xn)−Ayn‖ from (C1),
(C2) and (22), we have

lim
n→∞

‖xn − yn‖ = 0. (24)

We note that

‖yn − un‖ ≤ ‖yn − xn‖+ ‖xn − un‖ → 0 as n → ∞. (25)

Then, we have

‖yn − p‖2 = ‖γnun + (1− γn)Snun − p‖2
= ‖γn(un − p) + (1− γn)(Snun − p)‖2
= γn‖un − p‖2 + (1− γn)‖Snun − p‖2 − γn(1− γn)‖un − Snun‖2
≤ γn‖un − p‖2 + (1− γn)[‖un − p‖2 + k‖un − Snun‖2]

−γn(1− γn)‖un − Snun‖2
≤ ‖un − p‖2 + (1− γn)(k − γn)‖un − Snun‖2,

it follows that

(1− γn)(γn − k)‖un − Snun‖2 ≤ ‖un − p‖2 − ‖yn − p‖2
≤ ‖un − yn‖(‖un − p‖+ ‖yn − p‖)

hence from (C5) and (25), we obtain that

lim
n→∞

‖Snun − un‖ = 0. (26)

Next, we show that

lim sup
n→∞

〈(A− γf)z, z − xn〉 ≤ 0, (27)

where z = PΘ(I − A + γf)z, is a unique solution of the variational inequality
(14). We can choose a subsequence {unk

} of {un} such that

lim
k→∞

〈(A− γf)z, z − unk
〉 = lim sup

n→∞
〈(A− γf)z, z − un〉. (28)

Since {unk
} is bounded, there exists a subsequence {unkj

} of {unk
} such that

unkj
⇀ w. Without loss of generality, we can assume that unk

⇀ w. Since C is

closed and convex, w ∈ C. We first show that w ∈ ∩N
i=1F (Ti). To see that we

observe that we may assume that η
(nk)
i → ηi ( as k → ∞) for i = 1, 2, 3, ..., N .

It is easy to see that ηi > 0 and ΣN
i=1ηi = 1. We also have

Snk
x → Sx ( as k → ∞) ∀x ∈ C, (29)

where S = ΣN
i=1ηiTi. From Lemma 7, S is k-strictly pseudo-contraction and

from Lemma 8, F (S) = ∩N
i=1F (Ti). Since

‖unk
− Sunk

‖ ≤ ‖unk
− Snk

unk
‖+ ‖Snk

unk
− Sunk

‖
≤ ‖unk

− Snk
unk

‖+ΣN
i=1|η(nk)

i − ηi|‖Tiunk
‖,
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it follows from (26) and η
(nk)
i → ηi ( as k → ∞) that

lim
k→∞

‖unk
− Sunk

‖ = 0. (30)

Thus, we get Sunk
⇀ w. Now, we show that w ∈ MEP (F,ϕ), Since un =

Trnxn ∈ dom ϕ and (13) it follows from (A2), we also have ϕ(y) − ϕ(un) +
1
rn
〈y − un, un − xn〉 ≥ F (y, un), ∀y ∈ C, and hence

ϕ(y)− ϕ(un) + 〈y − unk
,
unk

− xnk

rnk

〉 ≥ F (y, unk
), ∀y ∈ C.

Since
unk

−xnk

rnk
→ 0 and unk

⇀ w, it follows by (A4), (A5) and the weakly lower

semicontinuity of ϕ that

F (y, w) + ϕ(w)− ϕ(y) ≤ 0, ∀y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)w. Since y ∈ C and w ∈ C,
we have yt ∈ C and hence F (yt, w)+ϕ(w)−ϕ(yt) ≤ 0. So, from (A1), (A4) and
the convexity of ϕ, we have

0 = F (yt, yt) + ϕ(yt)− ϕ(yt)

≤ tF (yt, y) + (1− t)F (yt, w) + tϕ(y) + (1− t)ϕ(w)− ϕ(yt)

≤ t(F (yt, y) + ϕ(y)− ϕ(yt)).

Dividing by t, we get F (yt, y) + ϕ(y) − ϕ(yt) ≥ 0. From (A3) and the weakly
lower semicontinuity of ϕ, we have F (w, y)+ϕ(y)−ϕ(w) ≥ 0 for all y ∈ C∩domϕ

and hence w ∈ MEP (F,ϕ). Next, we show that w ∈ F (S) =
⋂N

i=1 F (Ti). We
defined H : C → C by Hx = kx+ (1− k)Sx for all x ∈ C. It is clear that H is
nonexpansive and from (30) we obtain

‖unk
−Hunk

‖ = ‖unk
− kunk

− (1− k)Sunk
‖ = (1− k)‖unk

− Sunk
‖ → 0

as k → ∞. From Lemma 1, we have F (H) = F (S) =
⋂N

i=1 F (Ti). We can
show that w ∈ F (H). Assume that w 6= Hw. From Opial’s condition and
‖Hunk

− unk
‖ → 0, we have

lim inf
k→∞

‖unk
− w‖ < lim inf

k→∞
‖unk

−Hw‖
= lim inf

k→∞
‖(unk

−Hunk
) + (Hunk

−Hw)‖
= lim inf

k→∞
‖Hunk

−Hw‖ ≤ lim inf
k→∞

‖unk
− w‖.

This is a contradiction. So, we have w ∈ F (S). Therefore w ∈ Θ. It follows that
lim supn→∞〈(A−γf)z, z−xn〉 = lim supn→∞〈(A−γf)z, z−un〉 = limk→∞〈(A−
γf)z, z − unk

〉 = 〈(A − γf)z, z − w〉 ≤ 0, as required. Finally, we prove that
xn → z, where z = PΘ(I − A + γf)z. From bounded of {xn} and {un}, we set
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M ≥ ‖γf(xn)− z‖2 + ‖Tnun − z‖‖γf(xn)−Az‖. We note that

‖xn+1 − z‖2
= ‖αnγf(xn) + βnxn + ((1− βn)I − αnA)yn − z‖2
= ‖βn(xn − z) + ((1− βn)I − αnA)(yn − z) + αn(γf(xn)−Az)‖2
≤ ‖βn(xn − z) + ((1− βn)I − αnA)(yn − z)‖2

+2αn〈γf(xn)−Az, xn+1 − z〉
≤ [βn‖xn − z‖+ (1− βn − αnγ)‖yn − z‖]2

+2αn〈γf(xn)− γf(z), xn+1 − z〉+ 2αn〈γf(z)−Az, xn+1 − z〉
≤ [βn‖xn − z‖+ (1− βn − αnγ)‖un − z‖]2 + 2αnγα‖xn − z‖‖xn+1 − z‖

+2αn〈γf(z)−Az, xn+1 − z〉
≤ [βn‖xn − z‖+ (1− βn − αnγ)‖xn − z‖]2

+αnγα(‖xn − z‖2 + ‖xn+1 − z‖2)
+2αn〈γf(xn)−Az, xn+1 − z〉

= (1− αnγ)
2‖xn − z‖2 + αnγα(‖xn − z‖2

+‖xn+1 − z‖2) + 2αn〈γf(xn)−Az, xn+1 − z〉,

which implies that

(1− αnγα)‖xn+1 − z‖2 ≤ ((1− αnγ)
2 + αnγα)‖xn − z‖2

+2αn〈γf(xn)−Az, xn+1 − z〉,

and hence

‖xn+1 − z‖2

≤ (1− 2αnγ + α2
nγ

2 + αnγα)

(1− αnγα)
‖xn − z‖2

+
2αn

(1− αnγα)
〈γf(xn)−Az, xn+1 − z〉

≤
(
1− (2αn(γ − αγ)

(1− αnγα)
+

α2
nγ

2

(1− αnγα)

)
‖xn − z‖2

+
2αn

(1− αnγα)
〈γf(xn)−Az, xn+1 − z〉

≤
(
1− (2αn(γ − αγ))

(1− αnγα)

)
‖xn − z‖2 + α2

nγ
2

(1− αnγα)
‖xn − z‖2

+
2αn

(1− αnγα)
〈γf(xn)− γf(z), xn+1 − z〉

+
2αn

(1− αnγα)
〈γf(z)−Az, xn+1 − z〉
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≤
(
1− (2αn(γ − αγ))

(1− αnγα)

)
‖xn − z‖2 + α2

nγ
2

(1− αnγα)
‖xn − z‖2

+
2αγαn

(1− αnγα)
‖xn − z‖‖xn+1 − z‖+ 2αn

(1− αnγα)
〈γf(z)−Az, xn+1 − z〉

= (1− γn)‖xn − z‖2 + δn

where γn = (2αn(γ−αγ))
(1−αnγα)

and δn =
α2

nγ
2

(1−αnγα)
‖xn−z‖2+ 2αγαn

(1−αnγα)
‖xn−z‖‖xn+1−

z‖ + 2αn

(1−αnγα)
〈γf(z) − Az, xn+1 − z〉. From (C1), then Σ∞

n=1γn = ∞ and by

(27), we obtain lim supn→∞
δn
γn

≤ 0. Hence, by Lemma 2, the sequence {xn}
converges strongly to z. Moreover, since ‖xn − un‖ → 0, we also have un → z.
The proof is complete.

Corollary 1. [22, Theorem 3.1] Let H be a real Hilbert space, C a nonempty
closed convex subset of H. Let F : C × C → R be a bifunction satisfying (A1)-
(A5) and let ϕ : C → R∪ {+∞} be a proper lower semicontinuous and convex
function such that C ∩ domϕ 6= ∅. Let Ti : C → C be a ki-strictly pseudo-

contraction for some 0 ≤ ki < 1 such that Θ :=
⋂N

i=1 F (Ti) ∩MEP (F,ϕ) 6= ∅
and let f be a contraction of H into itself with coefficient α ∈ (0, 1). Assume that

for each n, {η(n)i }Ni=1 is a finite sequence of positive number such that ΣN
i=1η

(n)
i =

1 for all n and η
(n)
i > 0 for all 1 ≤ i < N. Let k = max{ki : 1 ≤ i ≤ N}. Assume

that either (B1) or (B2) holds. Starting with an arbitrary x1 ∈ H,un ∈ C and
define the sequences {xn} and {un} by

F (un, y) + ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C

yn = γnun + (1− γn)Σ
N
i=1η

(n)
i Tiun

xn+1 = αnf(xn) + βnxn + (1− βn − αn)yn, (31)

where {αn}, {βn}, {γn} ⊂ [0, 1] and {rn} ⊂ (0,∞). If the sequences {αn}, {βn},
{γn} and {rn} satisfies the conditions (C1)-(C5) in Theorem 1. Then {xn} and
{un} converge strongly to z, where z = PΘ(f)z.

Proof. Taking A ≡ I and γ ≡ 1. By Theorem 1, the sequence {xn} converges
strongly to z = PΘ(f)z.

Corollary 2. [22, Theorem 3.2] Let H be a real Hilbert space, C a nonempty
closed convex subset of H. Let F : C × C → R be a bifunction satisfying (A1)-
(A5) and let ϕ : C → R∪ {+∞} be a proper lower semicontinuous and convex
function such that C ∩ domϕ 6= ∅. Let Ti : C → C be a ki-strictly pseudo-

contraction for some 0 ≤ ki < 1 such that Θ :=
⋂N

i=1 F (Ti) ∩MEP (F,ϕ) 6= ∅.
Assume that for each n, {η(n)i }Ni=1 is a finite sequence of positive number such

that ΣN
i=1η

(n)
i = 1 for all n and η

(n)
i > 0 for all 1 ≤ i < N. Let k = max{ki :

1 ≤ i ≤ N}. Assume that either (B1) or (B2) holds. Starting with an arbitrary
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x1 = u ∈ H,un ∈ C and define the sequences {xn} and {un} by

F (un, y) + ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C

yn = γnun + (1− γn)Σ
N
i=1η

(n)
i Tiun

xn+1 = αnu+ βnxn + (1− βn − αn)yn, (32)

where {αn}, {βn},
{γn} ⊂ [0, 1] and {rn} ⊂ (0,∞). If the sequences {αn}, {βn}, {γn} and {rn}
satisfies the conditions (C1)-C(5) in Theorem 1. Then {xn} and {un} converge
strongly to z, where z = PΘu.

Proof. If setting f(xn) ≡ u for all x ∈ C, by Theorem 1, we obtain that the
desired result.

Theorem 2. Let H be a real Hilbert space, C a nonempty closed convex subset
of H. Let F : C × C → R be a bifunction satisfying (A1)-(A5) and let ϕ :
C → R ∪ {+∞} be a proper lower semicontinuous and convex function such
that C ∩ domϕ 6= ∅. Let T : C → C be a k-strictly pseudo-contraction for some
0 ≤ k < 1 such that Θ := F (T ) ∩ EP (F,ϕ) 6= ∅ and let f be a contraction of
H into itself with coefficient α ∈ (0, 1). Assume that either (B1) or (B2) holds.
Let A be a strongly positive bounded linear operator with coefficient γ > 0 and
0 < γ < γ

α . Let {xn} and {un} be the sequences generated by x1 ∈ H,un ∈ C
and

F (un, y) + ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C

yn = γnun + (1− γn)Tun

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)yn, (33)

for all n ∈ N, where un = Trn(xn − rnBxn), {αn}, {βn}, {γn} ⊂ [0, 1] and
{rn} ⊂ (0,∞). If the sequences {αn}, {βn}, {γn} and {rn} satisfies the following
conditions (C1)-(C3) and (C5) for some a, b, c, d ∈ R. Then {xn} and {un}
converge strongly to z, where z = PΘ(I − A + γf)z, which solves the unique
solution of the variational inequalities (14), which is the optimality condition
for the minimization problem (8).

Proof. For i = 1, 2, 3, . . . , N, and set T1 = T1 = . . . = TN = T by theorem 1,
we obtain the desired result.

Put γn ≡ 0, for all n ∈ N, we have the following corollary:

Corollary 3. Let H be a real Hilbert space, C a nonempty closed convex subset
of H. Let F : C × C → R be a bifunction satisfying (A1)-(A5) and let ϕ :
C → R∪{+∞} be a proper lower semicontinuous and convex function such that
C ∩ domϕ 6= ∅. Let T : C → C be a k-strictly pseudo-contractive mapping for
some 0 ≤ k < 1 such that Θ := F (T ) ∩EP (F,ϕ) 6= ∅ and let f be a contraction
of H into itself with coefficient α ∈ (0, 1). Assume that either (B1) or (B2)
holds. Let A be a strongly positive bounded linear operator with coefficient γ > 0
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and 0 < γ < γ
α . Let {xn} and {un} be the sequences generated by x1 ∈ H and

un ∈ C,

F (un, y) + ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)Tun, (34)

for all n ∈ N, where un = Trn(xn − rnBxn), {αn}, {βn} ⊂ [0, 1] and {rn} ⊂
(0,∞). If the sequences {αn}, {βn} and {rn} satisfies the following conditions
(C1)-(C3) and (C5) in Theorem 2. Then {xn} and {un} converge strongly to z,
where z = PΘ(I − A+ γf)z, which solves the unique solution of the variational
inequalities (14), which is the optimality condition for the minimization problem
(8).

Remark
(1) If we take βn ≡ 0 for all n ∈ N then the iterative scheme (34) reduces to

the following scheme:

F (un, y) + ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C

xn+1 = αnγf(xn) + ((1− αnA)Tun, (35)

which extend and improve Theorem 3.1 of Plubtieng and Panpaeng in [16] from
EP (F ) to MEP (F,ϕ)

(2) If we take ϕ ≡ 0 in Corollary 3, the iterative scheme (34) reduces to the
following scheme:

F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)Tun, (36)

which is a modification of the iterative scheme in the previous results, and by
Corollary 3, we obtain strong convergence of the sequence {xn} generated by
(36) under some sufficient conditions.

(3) If we take βn ≡ 0, for all n ∈ N then the iterative scheme (36) reduces
to the iterative scheme in Theorem 3.1 of Plubtieng and Panpaeng in [16] from
nonexpansive mappings to more general k-strictly pseudo-contractions in Hilbert
spaces.

(4) If γ = 1 and A ≡ I then the iterative scheme (36) reduces to Theorem
3.2 of S. Takahashi and W. Takahashi [18] from nonexpansive mappings to more
general k-strictly pseudo-contractions in Hilbert spaces.
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