• Title/Summary/Keyword: viscoplastic

Search Result 253, Processing Time 0.024 seconds

Finite Element Analysis of SMC Compression Molding Processes (SMC 압축성형 공정에 관한 유한요소해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.204-213
    • /
    • 1995
  • A finite element program is developed to analyze the flow phenomena in SMC compression molding as a viscoplastic model. The calculation of temperature distribution is also carried out by uncoupling the thermal analysis from the flow analysis. SMC molding processes with a flat plate substructure and the one with a T-shaped rib are considered in numerical simulation. The numerical results provide deformed shapes, temperature distribution in a SMC charge, and the forming load. The simulation of compression molding of a flat plate with a T-shaped rib requires a remeshing technique for the whole process.

  • PDF

Mechanical Behavior of Nanocrystalline Aluminum (II) : Modeling (나노결정 알루미늄의 기계적 거동 (II) : 모델링)

  • Khan Akhtar S.;Suh Yeong Sung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.136-138
    • /
    • 2005
  • The responses of nanocrystalline aluminum powder of different grain sizes, was modeled Using, Khan, Huang, and Liang (KHL) viscoplastic model including hi-linear Hall-Petch type, based on experimental measurements. Correlation of strain-rate-dependent stress responses for different grain sizes were in good agreement with the experimental results.

  • PDF

Dynamic Materials Model-Based Study on the Formability of Bulk Metallic Glass Sheets (동적재료모델에 의한 벌크 비정질 금속의 판재성형성에 대한 고찰)

  • 방원규;이광석;안상호;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.173-176
    • /
    • 2002
  • Viscoplastic deformation and sheet forming behavior of multicomponent Zr-based bulk metallic glass alloy has been investigated. From a series of mechanical test results, basic processing maps based on Dynamic Materials Model have been constructed to establish feasible forming conditions. Stamping in laboratory scale was then performed at the various stroke speeds and temperatures using a hydraulic press. Failure in macroscopic level was examined to check the validity of constructed processing maps.

  • PDF

Anisotropic Constitutive Model at Large Viscoplastic Deformations (탄소성 대변형에 관한 비등방 구성방정식)

  • Cho, Han-Wook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.178-184
    • /
    • 1995
  • A new combined isotropic/kinematic and orthotropic hardening viscoplastic model is proposed which can account for not only differential orientations but also preferred orientations of grains in n metal at finite plastic deformations with an introduction of multiple spin (rate of rotation) concept within the general framework of the model, the effects of anisotropy and constitutive spins will be discussed in conjunction with a closed-form solution for simple shear in n rigid-plastic material, which will be used to simulate experimental data of Montheillet, et al. (1984) for fixed-end tortion tests at finite plastic deformations.

  • PDF

CORRELATION BETWEEN J-INTEGRAL AND CMOD IN IMPACT BEHAVIOR OF 3-POINT BEND SPECIMEN

  • Han, M.S.;Cho, J.U.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.337-343
    • /
    • 2006
  • Numerical calculations are made in order to find a possible correlation between the J-integral and the crack mouth opening displacement(CMOD) in dynamic nonlinear fracture experiments of 3-point bend(3PB) specimens. Both elastic-plastic and elastic-viscoplastic materials are considered at different impact velocities. The J-integral may be estimated from the crack mouth opening displacement which can be measured directly from photographs taken during dynamic experiments.

Soil Stress-Deformation Analysis by Elasto-Plastic Model and Elasto-Viscoplastic Model - Using Back Analysis Method - (탄소성모델과 탄점소성모델을 이용한 지반변형해석 - 역해석 기법의 적용 -)

  • Kwon, Ho Jin;Song, Young Woo;Lee, Won Taek;Byun, Kwang Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.199-208
    • /
    • 1993
  • Using several soil parameters which are obtained from the PI-experimental formulas and the back analysis method, the elastic analysis, the elasto-plastic analysis and the elasto-viscoplastic analysis for soil deformation are executed. Comparing the results with those of consolidation test, the indirect estimation method for soil parameters and the suitability of constitutive models are studied. The elastic analysis using back analysis result and the elasto-plastic analysis using the perconsolidation test. The elasto-viscoplastic analysis disagrees with the results of meability coefficient obtained from back analysis are the nearest to the results of the consolidation test. It is inferred that elasto-viscoplastic model is not adequate to the soil of which plasticity index is low.

  • PDF

Reinforcement Effect of Viscoplastic Rockboft - Numerical Study (록볼트 점소성 거동에 의한 지보효과 분석 - 수치해석)

  • 조태진;이정인
    • The Journal of Engineering Geology
    • /
    • v.3 no.3
    • /
    • pp.215-230
    • /
    • 1993
  • In-situ rock mass demonstrates the variety of structural features, and especially the mechanical and spatial characteristics of joint (or joint system) greatly affect the deformation and fallure strength of the rock mass. In this study finite element model capable of analyzing the viscoplastic behavior of reinforced jointed rock mass has been developed based on equivalent material approach. Accuracy and reliability of the numerical model have verified by simuiating the behavior of simplified block model and comparing the results with analytic solutions. Practical applicability was also demonstrated by analyzing the time-dependent behavior of underground oil storage tunnel and assessing the reinforcement effect of rockbolt.

  • PDF

Structural Analysis of Liquid Rocket Thrust Chamber Regenerative Cooling Channel using Bodner-Partom Viscoplastic Model (Bodner-Partom 점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.69-76
    • /
    • 2006
  • Elastic-viscoplastic structural analysis has been performed for regenerative cooling chamber of liquid rocket thrust chamber using Bodner-Partom visco-plastic model. Strain rate test was conducted for a copper alloy at various temperatures in order to get material constants of visco-plastic model used in the structural analysis. Material constants of visco-plastic model were obtained from strain rate test results and visco-plastic model was incorporated into finite element program, Marc, by means of a user subroutine. The structural analysis results indicated that the deformation of cooling channel is mostly caused by thermal loading rather than pressure loading and confirmed structural stability of the cooling channel under the operating condition.

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

Endochronic simulation for viscoplastic collapse of long, thick-walled tubes subjected to external pressure and axial tension

  • Lee, Kuo-Long;Chang, Kao-Hua
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.627-644
    • /
    • 2004
  • In this study, the endochronic theory was used to investigate the collapse of thick-walled tubes subjected to external pressure and axial tension. The experimental and theoretical findings of Madhavan et al. (1993) for thick-walled tubes of 304 stainless steel subjected to external pressure and axial tension were compared with the endochronic simulation. Collapse envelopes for various diameter-to-thickness tubes under two different pressure-tension loadings were involved. It has been shown that the experimental results were aptly described by the endochronic approach demonstrated from comparison with the theoretical prediction employed by Madhavan et al. (1993). Furthermore, by using the rate-sensitivity function of the intrinsic time measure proposed by Pan and Chern (1997) in the endochronic theory, our theoretical analysis was extended to investigate the viscoplastic collapse of thick-walled tubes subjected to external pressure and axial tension. It was found that the pressure-tension collapse envelopes are strongly influenced by the strain-rate during axial tension. Due to the hardening of the metal tube of 304 stainless steel under a faster strain-rate during uniaxial tension, the size of the tension-collapse envelope increases.