• Title/Summary/Keyword: viscoelasticity

Search Result 287, Processing Time 0.024 seconds

Effect of Rheological Properties on the Sedimentation of Capsules in an Aqueous Polymer Solution (고분자 수용액의 레올러지 특성이 캡슐의 침강에 미치는 영향)

  • Kim, Dong-Joo;Kim, Jung-Ah;Kyong, Kee-Yeol;Yoon, Moung-Suk
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.85-89
    • /
    • 2005
  • An aim of this study is to study the correlation between rheological properties and sedimentation of capsules in aqueous polymer solution with low viscosity. Rheological properties of aqueous polymer solutions were controlled by carbomer (C), acylate/C10-30 alkyl acylate crosspolymer (AC), and ammonium acryloyldimethyltaurate/VP copolymer (AV). Small amount of polymer C solution had the highest viscosity and yield stress of polymer AV solution was higher than that of polymer C solution in the same viscosity when the concentration of polymer AV exceeded $0.35 wt\%$. Each aqueous polymer solution was tested and the results showed that as viscosity and yield stress increased, the sedimentation ratio of capsules decreased. The viscoelasticity data also showed the same tendency in a shear stress range of 0.1 to 2.0 Pa. These results demonstrated that the rheological properties of polymer solutions had a strong correlation with the sedimentation of capsules. When polymer I and AV were used, there was a synergistic effect and the correlation between rheological properties and sedimentation of capsules was very complicated. It was assumed that the characteristics of polymer structure and interaction between polymers caused this phenomena.

Tuning the rheological properties of colloidal microgel controlled with degree of cross-links (가교도가 제어된 콜로이드 마이크로겔의 유변학적 물성 분석)

  • Han, Sa Ra;Shin, Sung Gyu;Oh, Seung Joo;Cho, Sung Woo;Jung, Naseul;Kang, Bu Kyeung;Jeong, Jae Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.645-655
    • /
    • 2019
  • In this study, colloidal microgel with viscoelasticity were prepared by using dispersion containing physical crosslinking agents and microgels with various strengths depending on the degree of cross-links.As the chemical crosslinking agent PEGDA400 content increased, hydrogels have various physical properties the swelling ratio decreased from $2.0{\times}10^4%$ to $6.0{\times}10^3%$ and increased viscosity by about 60%. The colloidal microgel was prepared with micro hydrogel grinded to $100{\mu}m$ size and the rheological behavior was confirmed with physical cross linking agent. A colloidal microgel having various viscosities was prepared by controlling starch and alginate based on micro-hydrogel containing 0.75% (w/v) of PEGDA400. In conclusion, these results would be highly useful for applying as a product that can give various physical properties to the colloidal suspensions, cosmetics, paint, and food industry.

Characteristics and Optimization of the Formula of Mashed Potatoes Using Purple-fleshed Potato (Solanum tuberosum L.) by Mixture Design (혼합물 실험계획법을 이용한 유색감자 자영(Solanum tuberosum L.) 매쉬드 포테이토 분말의 혼합비 최적화 및 매쉬드 포테이토의 특성)

  • Jung, Hwabin;Choi, Ji-il;Yoon, Won Byong
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2017
  • Purple-fleshed potato powder (PFPP) was investigated to determine optimal mixing ratio with milk powder and dextrin to produce a ready-to-eat mashed potato powder. The rheological characteristics, color, and anthocyanin contents were studied at a different concentration of ingredients. The power-law model was applied to explain the mechanical spectra of mashed potatoes which represented the change in structure induced by different mixing ratios. Mixture design was used to obtain the experimental points used to establish the empirical models to describe the effects of each ingredient on the characteristic of the mashed potato. The results of mechanical spectra showed that both storage and loss moduli (G' and G'') were significantly influenced by PFPP and milk powder concentration. The power law parameters n' and n'' showed higher values for the mashed potato with a lower concentration of PFPP and a higher concentration of milk powder, which showed that the gel networks involved in the mashed potato were weaker. The optimum mixing ratio with the highest redness and anthocyanin content, while maintaining the rheological properties similar to the commercial mashed potato, was determined as PFPP:milk powder:dextrin = 90.49:4.86:4.65 (w/w). The proportions of PFPP and milk powder in the formulation significantly changed the characteristics of mashed potato, whereas no significant effect of dextrin was observed in this formulation.

Development of a CPInterface (COMSOL-PyLith Interface) for Finite Source Inversion using the Physics-based Green's Function Matrix (물리 기반 유한 단층 미끌림 역산을 위한 CPInterface (COMSOL-PyLith Interface) 개발)

  • Minsu Kim;Byung-Dal So
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.268-274
    • /
    • 2023
  • Finite source inversion is performed with a Green's function matrix and geodetic coseismic displacement. Conventionally, the Green's function matrix is constructed using the Okada model (Okada, 1985). However, for more realistic earthquake simulations, recent research has widely adopted the physics-based model, which can consider various material properties such as elasticity, viscoelasticity, and elastoplasticity. We used the physics-based software PyLith, which is suitable for earthquake modeling. However, the PyLith does not provide a mesh generator, which makes it difficult to perform finite source inversions that require numerous subfaults and observation points within the model. Therefore, in this study, we developed CPInterface (COMSOL-PyLith Interface) to improve the convenience of finite source inversion by combining the processes of creating a numerical model including sub-faults and observation points, simulating earthquake modeling, and constructing a Green's function matrix. CPInterface combines the grid generator of COMSOL with PyLith to generate the Green's function matrix automatically. CPInterface controls model and fault information with simple parameters. In addition, elastic subsurface anomalies and GPS observations can be placed flexibly in the model. CPInterface is expected to enhance the accessibility of physics-based finite source inversions by automatically generating the Green's function matrix.

Rheological properties of dental resin cements during polymerization (치과용 레진 시멘트의 유변학적 성질)

  • Lee, Jae-Rim;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.82-89
    • /
    • 2014
  • Purpose: The purpose of this study was to observe the change of viscoelastic properties of dental resin cements during polymerization. Materials and methods: Six commercially available resin cement materials (Clearfil SA luting, Panavia F 2.0, Zirconite, Variolink N, RelyX Unicem clicker, RelyX U200) were investigated in this study. A dynamic oscillation-time sweep test was performed with AR1500 stress controlled rheometer at $32^{\circ}C$. The changes in shear storage modulus (G'), shear loss modulus (G"), loss tangent (tan ${\delta}$) and displacement were measured for twenty minutes and repeated three times for each material. The data were analyzed using one-way ANOVA and Tukey's post hoc test (${\alpha}$=0.05). Results: After mixing, all materials demonstrated an increase in G' with time, reaching the plateau in the end. RelyX U200 demonstrated the highest G' value, while RelyX Unicem (clicker type) and Variolink N demonstrated the lowest G' value at the end of experimental time. Tan ${\delta}$was maintained at some level and reached the zero at the starting point where G' began to increase. The tan ${\delta}$and displacement of the tested materials showed similar pattern in the graph within change of time. The displacement of all 6 materials approached to zero within 6 minutes. Conclusion: Compared to other resin cements used in this study, RelyX U200 maintained plastic property for a longer period of time. When it completed the curing process, RelyX U200 had the highest stiffness. It is convenient for clinicians to cement multiple units of dental prostheses simultaneously.

Rheological Properties of ${\beta}-Glucan$ Isolated from Non-waxy and Waxy Barley (메성 및 찰성보리 ${\beta}-Glucan$의 리올로지 특성)

  • Choi, Hee-Don;Park, Yong-Gon;Jang, Eun-Hee;Seog, Ho-Moon;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.590-597
    • /
    • 2000
  • The rheological properties of ${\beta}-glucans$ isolated from non-waxy and waxy barley were investigated. ${\beta}-Glucan$ solutions showed pseudoplastic properties and their behaviors were explained by applying Power law model in the range of concentrations$(1{\sim}4%)$ and temperatures$(20{\sim}65^{\circ}C)$. The effects of temperature and concentration on the apparent viscosity at $700\;s^{-1}$ shear rate were examined by applying Arrhenius equation and power law equation, and their effect was more pronounced in waxy ${\beta}-glucan$ solutions. The activation energy for flow of ${\beta}-glucan$ solutions decreased with the increase of concentration, and the concentration-dependent constant A increased with the increase of temperature. The intrinsic viscosity of waxy ${\beta}-glucan$ was higher than that of non-waxy ${\beta}-glucan$. The transition from dilute to concentrate region occurred at a critical coil overlap parameter $C^*[{\eta}]=0.02.$ The slopes of non-waxy and waxy ${\beta}-glucan$ at $C[{\eta}] were similar, but the slope of waxy ${\beta}-glucan$ at $C[{\eta}]>C^*[{\eta}]$ was higher than that of non-waxy ${\beta}-glucan$. Dynamic viscoelasticity measurement showed that cross-over happened, and storage modulus was higher than loss modulus at frequency range above cross-over. ${\beta}-Glucan$ solutions formed weak gels after stored for 24 hr.

  • PDF

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.