• 제목/요약/키워드: viscoelastic properties

검색결과 433건 처리시간 0.022초

Determination of Frequency Independent Critical Concentration of Xathan and Carob Mixed Gels

  • Yoon, Won-Byong;Gunasekaran, Sundaram
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.1069-1071
    • /
    • 2007
  • The frequency independent critical concentration (Cc) of xanthan and carob (X/C) mixed gel was determined based on the Winter-Chambon's theory. X/C mixed (X/C=1:1 ratio) gels were prepared from 0.1 to 1% of concentration. The linear viscoelastic properties, i.e., storage and loss modulus, of X/C mixed gel at $20^{\circ}C$ were measured by frequency sweep tests. The frequency independence of tangent function of phase angle (tan ${\delta}$) of X/C mixed gels was graphically determined from the intersection of the plot of phase angle against concentration at varied frequencies. The intersection (C=0.43%) was considered to be Cc of X/C mixed gel.

사출성형 냉각조건이 열에 의한 복굴절에 미치는 영향 (Influences of Cooling Conditions on the Thermally-Induced Birefringence in Injection Molding)

  • 이호상
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.258-261
    • /
    • 2007
  • Simulations of the thermally-induced residual stresses and birefringence in freely quenched plates of polycarbonate were performed by using the linear viscoelastic and photoviscoelastic constitutive equations for the mechanical and optical properties, respectively, and the first order rate equation for volume relaxation. The predictions for the birefringence showed good agreement with experimental measurements. Based on the simulation, the influences of various cooling conditions on the residual stress and birefringence in plates were investigated. The residual stress and birefringence increased with increasing initial temperature, decreasing coolant temperature and increasing heat transfer coefficient of coolants.

  • PDF

미세입자분산 고분자 현탁액의 3차원 직접수치해석 (DIRECT NUMERICAL SIMULATION OF PARTICLE SUSPENSIONS IN A POLYMERIC LIQUID)

  • 황욱렬
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.101-108
    • /
    • 2009
  • We present a new finite-element scheme for direct numerical simulation of particle suspensions in simple shear flow of a viscoelastic fluid in 3D. The sliding tri-periodic representative cell concept has been combined with DEVSS/DG finite element scheme by introducing constraint equations along the domain boundary. Rigid body motion of the freely suspended particle is described by the rigid-shell description and implemented by Lagrangian multipliers on particle boundaries. We present the bulk rheology of suspensions through the numerical examples of single-, two- and many-particle problems, which represent a large number of such systems in simple shear flow. We report the steady bulk viscosity and the first normal stress coefficient, which show shear-thickening behavior for both properties.

Solvent Effect on Stress Relaxation of PET Filament Fibers and Self Diffusion of Crystallites

  • Nam Jeong Kim;Eung Ryul Kim;Sang Joon Hahn
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.468-473
    • /
    • 1991
  • Viscoelastic properties of PET filament fibers on stress relaxation were investigated in the solvents of $H_2$O, 0.05% NaOH and 50% DMF using an Instron (UTM4-100 Tensilon) with solvent chamber. The theoretical stress relaxation equation derived by applying the Ree-Eyring's hyperbolic sine law to dashpot of three element non-Newtonian model was applied to the experimental stress relaxation curves, and the model parameters $G_1,G_2$, ${\alpha}$ and ${\beta}$ were obtained. By analyzing temperature dependency of the relaxation time, the values of activation entropy, activation enthalpy and activation free energy for flow in PET filament fiber were evaluated, the activation free energy being about 25.7 kcal/mol. The self diffusion coefficient and hole distance were obtained from parameters ${\alpha}$, ${\beta}$ and crystallite size in order to study the self diffusion and the orientation of crystallites in amorphous region and the effect of solvent.

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium

  • Farid, Khurram;Taj, Muhammad
    • Advances in concrete construction
    • /
    • 제13권3호
    • /
    • pp.255-264
    • /
    • 2022
  • Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계 (Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency)

  • 이인원;안남현
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.

Measurement of Dynamic Compressive Properties of Apples using the Oscillatory Test

  • Lee, Jong-Whan;Tan, Jinglu;Waluyo, Sri
    • Journal of Biosystems Engineering
    • /
    • 제37권1호
    • /
    • pp.28-35
    • /
    • 2012
  • Purpose: This study performed the oscillatory test using the texture analyzer to characterize the viscoelastic behavior of apples such as the storage modulus (E'), the loss modulus (E"), the complex modulus (${\mid}E^*{\mid}$) and the energy dissipated per cycle ($W_{diss}$). Methods: The sinusoidal deformation with the frequency of 1-10 Hz and the maximum displacement of 0.1 mm were applied to the flesh tissues of Fuji, Golden Delicious and Red Delicious apples. The Lissajous figure was used to measure the phase angle(${\delta}$) between stress and strain curve. Results: Trigger force was critical to the measurement of the phase angle. E', E", ${\mid}E^*{\mid}$ and Wdiss were measured using the Lissajous figure and the phase angle. The complex modulus of Golden Delicious apple was significantly lower than those of Fuji apple and Red Delicious apple. Conclusions: Apple flesh was exhibiting more elasticity at low frequency, and more viscosity at high frequency. Dynamic compressive properties of Fuji apple were similar to those of Red Delicious apple but significantly different from those of Golden Delicious apple.

사출성형에서 사출속도, 수지의 종류 및 금형 형상에 따른 젯팅 현상에 관한 고찰 (Investigation of the Jetting Phenomena in Injection Molding for Various Injection Speeds, Resins and Mold Shapes)

  • 류민영;최종근;배유리
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.3-10
    • /
    • 2003
  • The formation of surface defects associated with Jotting in injection molding is related to the geometries of cavity and fate, operational conditions and the rheological properties of polymer. In this study we have examined jetting phenomena in injection molding process for the throe kinds of PCs which have different molecular weights and structures, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes those are tensile, flexural and impact test specimens with various gates and cavity thicknesses. Through this study we have observed that the jetting is related to the dic swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

복합재료내의 계면 접착 특성에 따른 지능형 구조물의 진동제어에 관한 연구 (Studies on the Vibration Controllability of Smart Structure Depending on the Interfacial Adhesion Properties of Composite Materials)

  • 한상보;박종만;차진훈
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1093-1102
    • /
    • 1998
  • The success of controllability of smart structures depends on the quality of the bonding along the interface between the main structure and the attached sensing and acuating elements. Generally, the analysis procedures neglect the effect of the interfacial bond layer or assume that this bond layer behaves like viscoelastic material. Three different bond layers. two modified epoxy adhesives, and one isocyanate adhesive were prepared for their toughness and moduli. Bond layer of the chosen adhesive provides an almost perfect bonding condition between the composite structure and the PZT while bended significantly like arrow-shape. The perfect bonding condition is tested by considering various material properties of the bond layers. and based on this perfect bonding condition, the effects of the interfacial bond layer on the dynamic behavior and controllability of the test structure is experimentally studied. Once the perfect bonding condition is achieved. dynamic effects of the bond layer itself on the dynamic characteristics of the main structure is negligible. but the contribution of the attached PZT elements on the stiffness of the multi-layered structure becomes significant when the thickness of the bond layer increased.

  • PDF

환경친화성 하이솔리드 도료의 제조 및 고형분 함량에 따른 도막물성 변화 (Preparation of Environmental Friendly High-Solid Coatings and Their Property Changes with Solid Contents)

  • 박홍수;조혜진;심일우;유혁제;김영찬
    • 한국응용과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.116-122
    • /
    • 2005
  • Room temperature cure type of acryl-urethane coatings with high solid content were prepared in this study. Acrylic resins with 80% solid content were cured with hexamethylene diisocyanate (Desmodure N-3600). The cure time of prepared coatings BEHCC-84 (BEHC-84 : $T_g=0^{\circ}C$) and BEHCC-87 (BEHC-87 : $T_g=30^{\circ}C$), measured by rigid-body pendulum method, was recorded 8.3 hours and 3.8 hours, respectively. Dynamic viscoelastic experiment also revealed the glass transition temperature of BEHCC-84 and BEHCC-87 to be $T_g=40.3^{\circ}C$ and $T_g=43.3^{\circ}C$, respectively. It was found that the adhesion and flexural properties among various propeties of coatings were enhanced by the incorporation of caprolactone acrylate monomer into the acrylic resins.