Browse > Article
http://dx.doi.org/10.12989/acc.2022.13.3.255

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium  

Farid, Khurram (Department of Mathematics, University of Azad Jammu and Kashmir)
Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Publication Information
Advances in concrete construction / v.13, no.3, 2022 , pp. 255-264 More about this Journal
Abstract
Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.
Keywords
body forces; MTs; orthotropic elastic shell model; vibration; wave propagation;
Citations & Related Records
Times Cited By KSCI : 21  (Citation Analysis)
연도 인용수 순위
1 Hussain, M. and Naeem, M.N. (2019), "Vibration characteristics of single-walled carbon nanotubes based on nonlocal elasticity theory using wave propagation approach (WPA) including chirality", Perspect. Carbon Nanotube.. http://doi.org/10.5772/intechopen.85948.   DOI
2 Li, S., Wang, C. and Nithiarasu, P. (2017), "Three-dimensional transverse vibration of microtubules", J. Appl. Phys., 121(23), 234301. https://doi.org/10.1063/1.4986630.   DOI
3 Howard, J. (2001), "Mechanics of motor proteins and the cytoskeleton", Appl. Mech. Rev., 55(2), B39. https://doi.org/10.1063/1.1472396.   DOI
4 Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Report. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.   DOI
5 Prota, A.E., Bargsten, K., Zurwerra, D., Field, J.J., Diaz, J.F., Altmann, K.H. and Steinmetz, M.O. (2013), "Molecular mechanism of action of microtubule-stabilizing anticancer agents", Sci., 339(6119), 587-590. https://doi.org/10.1126/science.1230582.   DOI
6 Xue, J.Z., Woo, E.M., Postow, L., Chait, B.T. and Funabiki, H. (2013), "Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly", Develop. Cell, 27(1), 47-59. https://doi.org/10.1016/j.devcel.2013.08.002.   DOI
7 Safaei, B., Naseradinmousavi, P. and Rahmani, A. (2016), "Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression", J. Mole. Graph. Model., 65, 43-60. https://doi.org/10.1016/j.jmgm.2016.02.001.   DOI
8 Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9(4), 045108. https://doi.org/10.1063/1.5086216.   DOI
9 Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Tech., 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.   DOI
10 Yi, L., Chang, T. and Ru, C. (2008), "Buckling of microtubules under bending and torsion", J. Appl. Phys., 103(10), 103516. https://doi.org/10.1063/1.2930882.   DOI
11 Lasser, M., Tiber, J. and Lowery, L.A. (2018), "The role of the microtubule cytoskeleton in neurodevelopmental disorders", Front. Cellular Neurosci., 12, 165. https://doi.org/10.3389/fncel.2018.00165.   DOI
12 Civalek, O ., Demir, C . and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298. https://doi.org/10.3390/mca15020289.   DOI
13 Zhang, Y., Li, N., Caron, C., Matthias, G., Hess, D., Khochbin, S. and Matthias, P. (2003), "HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo", EMBO J., 22(5), 1168-1179. https://doi.org/10.1093/emboj/cdg115.   DOI
14 Hussain, M., Naeem, M.N., Shahzad A, He, M., Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320.   DOI
15 Hussain, M., Naeem, M.N., Tounsi Abdelouahed, and Taj. M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.   DOI
16 Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. and Jermiin, L.S. (2017), "ModelFinder: Fast model selection for accurate phylogenetic estimates", Nat. Method., 14(6), 587-589. https://doi.org/10.1038/nmeth.4285.   DOI
17 Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.   DOI
18 Nogales, E., Whittaker, M., Milligan, R.A. and Downing, K.H. (1999), "High-resolution model of the microtubule", Cell, 96(1), 79-88. https://doi.org/10.1016/s0092-8674(00)80961-7.   DOI
19 Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams", Thin Wall. Struct., 166, 108127. https://doi.org/10.1016/j.tws.2021.108127.   DOI
20 Hussain, M. and Naeem, M.N. (2019c), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci. Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.   DOI
21 Canty, J.T., Tan, R., Kusakci, E., Fernandes, J. and Yildiz, A. (2021), "Structure and mechanics of dynein motors", Annual Rev. Biophys., 50, 549-574. https://doi.org/10.1146/annurev-biophys-111020-101511.   DOI
22 Pokorny, J. and Wu, T.M. (1998), Biophysical Aspects of Coherence and Biological Order, Springer.
23 Proteggente, A.R., Pannala, A.S., Paganga, G., Buren, L.V., Wagner, E., Wiseman, S. and Rice-Evans, C.A. (2002), "The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition", Free Radical Res., 36(2), 217-233. https://doi.org/10.1080/10715760290006484.   DOI
24 Asghar, S. Hussain M, and Naeem M. (2019b), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J. Phys. E Low-Dimen. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726.   DOI
25 Atarod, D., Eskandari-Sedighi, G., Pazhoohi, F., Karimian, S.M., Khajeloo, M., and Riazi, G.H. (2015), "Microtubule dynamicity is more important than stability in memory formation: An in vivo study", J. Mole. Neurosci., 56(2), 313-319. https://doi.org/10.1007/s12031-015-0535-4.   DOI
26 Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443.   DOI
27 Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459.   DOI
28 Cottrill, R.A., McKinley, R.S. and Van Der Kraak, G. (2002), "An examination of utilizing external measures to identify sexually maturing female American eels, Anguilla rostrata, in the St. Lawrence River", Envir. Biol. Fish., 65(3), 271-287. http://doi.org/10.1002/mcf2.10011.   DOI
29 Rysaeva, L.K., Korznikova, E.A., Murzaev, R.T., Abdullina, D. U., Kudreyko, A.A., Baimova, J.A. and Dmitriev, S.V. (2020), "Elastic damper based on the carbon nanotube bundle", Facta Universitatis Ser. Mech. Eng., 18(1), 1-12. https://doi.org/10.22190/FUME200128011R.   DOI
30 Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.   DOI
31 Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.   DOI
32 Hussain, M., Shahzad, A., Naeem, M.N. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Comput. Fluid. Dyn. Basic Instrum. Appl. Sci., 333. https://doi.org/10.5772/intechopen.72172.   DOI
33 Sirenko, Y.M., Stroscio, M.A. and Kim, K. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003.   DOI
34 Das, A., Hirwani, C.K., Panda, S.K., Topal, U. and Dede, T. (2018), "Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques", Steel Compos. Struct., 29(6), 749-758. https://doi.org/10.12989/scs.2018.29.6.749.   DOI
35 de Almeida Engler, J., Van Poucke, K., Karimi, M., De Groodt, R., Gheysen, G., Engler, G. and Gheysen, G. (2004), "Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots", Plant J., 38(1), 12-26. https://doi.org/10.1111/j.1365-313x.2004.02019.x   DOI
36 Dewangan, H.C., Thakur, M., Patel, B., Ramteke, P.M., Hirwani, C.K. and Panda, S.K. (2021), "Dynamic deflection responses of glass/epoxy hybrid composite structure filled with hollow-glass microbeads", Eur. Phys. J. Plus, 136(7), 722. https://doi.org/10.1140/epjp/s13360-021-01710-7.   DOI
37 Sirajuddin, M., Rice, L.M. and Vale, R.D. (2014), "Regulation of microtubule motors by tubulin isotypes and post-translational modifications", Nat. Cell Biol., 16(4), 335-344. https://doi.org/10.1038/ncb2920.   DOI
38 Sirenko, Y.M., Stroscio, M.A. and Kim, K. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003.   DOI
39 Steinberg, G., Schuster, M., Theisen, U., Kilaru, S., Forge, A. and Martin-Urdiroz, M. (2012), "Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport", J. Cell Biol., 198(3), 343-355. https://doi.org/10.1083/jcb.201201087.   DOI
40 Taj, M. and Zhang, J.Q. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.   DOI
41 Job, D., Valiron, O. and Oakley, B. (2003), "Microtubule nucleation", Current Opinion Cell Biol., 15(1), 111-117. https://doi.org/10.1016/s0955-0674(02)00003-0.   DOI
42 Joglekar, A.P., Bloom, K.S. and Salmon, E. (2010), "Mechanisms of force generation by end-on kinetochore-microtubule attachments", Current Opinion Cell Biol., 22(1), 57-67 https://doi.org/10.1016/j.ceb.2009.12.010.   DOI
43 Fattahi, A.M., Safaei, B., Qin, Z. and Chu, F. (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177-187. https://doi.org/10.12989/scs.2021.38.2.177.   DOI
44 Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-Dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135.   DOI
45 Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039.   DOI
46 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
47 Ku, N.O., Zhou, X., Toivola, D.M. and Omary, M.B. (1999), "The cytoskeleton of digestive epithelia in health and disease", Am. J. Phys. Gastrointestinal Liver Phys., 277(6), G1108-G1137. https://doi.org/10.1152/ajpgi.1999.277.6.g1108.   DOI
48 Taj, M., Khadimallah, M.A., Hussain, M., Fareed, K., Safeer, M., Khedher, K.M. and Al Qahtani, A. (2021), "Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis", Adv. Concrete Constr., 11(3), 255-260. https://doi.org/10.12989/acc.2021.11.3.255.   DOI
49 Katariya, P.V., Panda, S.K. and Mehar, K. (2021), "Theoretical modelling and experimental verification of modal responses of skewed laminated sandwich structure with epoxy-filled softcore", Eng. Struct., 228, 111509. https://doi.org/10.1016/j.engstruct.2020.111509.   DOI
50 Kis, A., Kasas, S., Babic, B., Kulik, A., Benoit, W., Briggs, G. and Forro, L. (2002), "Nanomechanics of microtubules", Phys. Rev. Lett., 89(24), 248101. https://doi.org/10.1103/PhysRevLett.89.248101.   DOI
51 Kucera, O. (2012), "Cellular nanoelectromechanics". https://doi.org/10.3389/fmech.2020.00037.
52 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Nonlinear frequency responses of functionally graded carbon nanotubereinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.   DOI
53 Vogl, A., Linck, R. and Dym, M. (1983), "Colchicine-induced changes in the cytoskeleton of the golden-mantled ground squirrel (Spermophilus lateralis) Sertoli cells", Am. J. Anatom., 168(1), 99-108. https://doi.org/10.1002/aja.1001680110.   DOI
54 Hussain, M. and Naeem., M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.   DOI
55 Janson, M.E., de Dood, M.E. and Dogterom, M. (2003), "Dynamic instability of microtubules is regulated by force", J. Cell biol., 161(6), 1029-1034. https://doi.org/10.1083/jcb.200301147.   DOI
56 Milner, B., Squire, L.R. and Kandel, E.R. (1998), "Cognitive neuroscience and the study of memory", Neuron, 20(3), 445-468. https://doi.org/10.1016/s0896-6273(00)80987-3.   DOI
57 Molodtsov, M.I., Ermakova, E.A., Shnol, E.E., Grishchuk, E.L., McIntosh, J.R. and Ataullakhanov, F.I. (2005), "A molecular-mechanical model of the microtubule", Biophys. J., 88(5), 3167-3179. https://doi.org/10.1529/biophysj.104.051789.   DOI
58 Ouakad, H.M. and Sedighi, H.M. (2016), "Rippling effect on the structural response of electrostatically actuated single-walled carbon nanotube based NEMS actuators", Int. J. Non-Linear Mech., 87, 97-108. https://doi.org/10.1016/j.ijnonlinmec.2016.09.009.   DOI
59 Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", Mech., 23(5), 678-687. https://doi.org/10.5755/j01.mech.23.5.14883.   DOI
60 Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces", Eur. Phys. J. Plus, 136(6), 1-16. https://doi.org/10.1140/epjp/s13360-021-01632-4.   DOI
61 Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", Mech., 23(5), 678-687. https://doi.org/10.5755/j01.mech.23.5.14883.   DOI
62 Safaei, B., Fattahi, A.M. and Chu, F. (2018), "Finite element study on elastic transition in platelet reinforced composites", Microsyst. Tech., 24(6), 2663-2671. https://doi.org/10.1007/s00542-017-3651-y.   DOI
63 Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.   DOI
64 Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.   DOI
65 Pokorny, J., Vedruccio, C., Cifra, M. and Kucera, O. (2011), "Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules", Eur. Biophys. J., 40(6), 747-759. http://doi.org/10.1007/s00249-011-0688-1.   DOI
66 Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532.   DOI
67 Panda and Singh (2010b), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809.   DOI
68 Panda, S.K. and Singh, B.N. (2010a), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1.   DOI
69 Shah, M., Geddes, J., McLaughlin, B. and Gilbody, H. (1998), "New low-energy measurements and calculation of ionization in collisions", J. Phys. B Atomic, Mole. Optical Phys., 31(19), L757. http://doi.org/10.1088/0953-4075/39/8/019.   DOI
70 Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. http://doi.org/10.12989/anr.2019.7.5.337.   DOI
71 Grishchuk, E.L., Molodtsov, M.I., Ataullakhanov, F.I. and McIntosh, J.R. (2005), "Force production by disassembling microtubules", Nat., 438(7066), 384-388. https://doi.org/10.1038/nature04132.   DOI
72 Frankamp, B.L., Boal, A.K. and Rotello, V.M. (2002), "Controlled interparticle spacing through self-assembly of Au nanoparticles and poly (amidoamine) dendrimers", J. Am. Chem. Soc., 124(51), 15146-15147. https://doi.org/10.1021/ja0280426.   DOI
73 Gao, Y., Wang, J. and Gao, H. (2010), "Persistence length of microtubules based on a continuum anisotropic shell model", J. Comput. Theo. Nanosci., 7(7), 1227-1237. https://doi.org/10.1166/jctn.2010.1476.   DOI
74 Havelka, D. and Cifra, M. (2009), "Calculation of the electromagnetic field around a microtubule", Acta Polytechnica, 49(2), 2009. http://doi.org/10.14311/1125.   DOI
75 Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Vibroacoustic analysis of thermo-elastic laminated composite sandwich curved panel: A higher-order FEM-BEM approach", Int. J. Mech. Mater. Des., 15(2), 271-289. https://doi.org/10.1007/s10999-018-9426-5.   DOI
76 Shen, H.S. (2010), "Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium", Biomech. Model. Mechanobiol., 9(3), 345-357. https://doi.org/10.1007/s10237-009-0180-3.   DOI
77 Gholami, D., Ghaffari, S.M., Shahverdi, A., Sharafi, M., Riazi, G., Fathi, R. and Hezavehei, M. (2018), "Proteomic analysis and microtubule dynamicity of human sperm in electromagnetic cryopreservation", J. Cellular Biochem., 119(11), 9483-9497. https://doi.org/10.1002/jcb.27265.   DOI
78 Giannakakou, P., Gussio, R., Nogales, E., Downing, K.H., Zaharevitz, D., Bollbuck, B. and Fojo, T. (2000), "A common pharmacophore for epothilone and taxanes: Molecular basis for drug resistance conferred by tubulin mutations in human cancer cells", Proceedings of the National Academy of Sciences, 97(6), 2904-2909. https://doi.org/10.1073/pnas.040546297.   DOI
79 Gu, B., Mai, Y.W. and Ru, C. (2009), "Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing", Acta Mechanica, 207(3-4), 195-209. https://doi.org/10.1007/s00707-008-0121-8.   DOI
80 Gu, B., Mai, Y.W. and Ru, C. (2009), "Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing", Acta Mechanica, 207(3), 195-209. http://doi.org/10.1007/s00707-008-0121-8.   DOI
81 Havelka, D., Cifra, M., Kucera, O., Pokorny, J. and Vrba, J. (2011), "High-frequency electric field and radiation characteristics of cellular microtubule network", J. Theo. Biol., 286, 31-40. https://doi.org/10.1016/j.jtbi.2011.07.007.   DOI
82 Gao, Y. and Lei, F.M. (2009), "Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory", Biochem. Biophys. Res. Comm., 387(3), 467-471. https://doi.org/10.1016/j.bbrc.2009.07.042.   DOI
83 Hussain, M. and Naeem, M. (2019d), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.   DOI
84 Singh, S., Krishnaswamy, J.A. and Melnik, R. (2020), "Biological cells and coupled electro-mechanical effects: The role of organelles, microtubules, and nonlocal contributions", J. Mech. Behav. Biomed. Mater., 110, 103859. https://doi.org/10.1016/j.jmbbm.2020.103859.   DOI
85 Arulanandam, R., Batenchuk, C., Varette, O., Zakaria, C., Garcia, V., Forbes, N.E. Cox, J. (2015), "Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing", Nat. Comm., 6(1), 1-14. https://doi.org/10.1038/ncomms7410.   DOI
86 Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. https://doi.org/10.1140/epjp/i2019-12912-7.   DOI
87 Hussain, M. and Naeem, M.N. (2018), "Vibrational behavior of single-walled carbon nanotubes based on donnell shell theory using wave propagation approach", Novel Nanomater. Synthesis Appl., 78-90.
88 Tuszynski, J.A., Brown, J.A. and Hawrylak, P. (1998), "Dielectric polarization, electrical conduction, information processing and quantum computation in microtubules. Are they plausible?", Philos. Transac. Royal Soc. London Ser. A Math. Phys. Eng. Sci., 356(1743), 1897-1926. https://doi.org/10.1098/rsta.1998.0255.   DOI
89 Taj, M., Hussain, M., Afsar, M.A., Safeer, M., Ahmad, M., Naeem, M.N. and Tounsi, A. (2020), "Effects of elastic medium on buckling of microtubules due to bending and torsion", Adv Concrete Constr., 9(5), 491-501. https://doi.org/10.12989/acc.2020.9.5.491.   DOI
90 Tuszynski, J.A., Priel, A., Brown, J.A., Cantiello, H.F. and Dixon, J.M. (2018), Electronic and Ionic Conductivities of Microtubules and Actin Filaments, Their Consequences for Cell Signaling and Applications to Bioelectronics, CRC Press.
91 Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.   DOI
92 Taj, M.S. and Muhammad, S. (2019), "Vibrational analysis of microtubules embedded within viscoelastic medium using orthotropic Kelvin like model", Sains Malaysiana, 48(12), 2841-2847. http://doi.org/10.17576/jsm-2019-4812-25.   DOI
93 Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.   DOI
94 Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309.   DOI
95 Taj, M., Khadimallah, M.A., Hussain, M., Mahmood, S., Safeer, M., Al Naim, A.F. and Ahmad, M. (2021), "Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments", Adv. Concrete Constr., 11(1), 81-88. http://doi.org/10.12989/acc.2021.11.1.081.   DOI
96 Taj, M., Khadimallah, M.A., Hussain, M., Mahmood, S., Safeer, M., Rashid, Y. and Ponnore, J. (2021), "Instability analysis of microfilaments with and without surface effects using Euler theory", Adv. Nano Res., 10(6), 509-516. https://doi.org/10.12989/anr.2021.10.6.509.   DOI
97 Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.   DOI
98 Tsiatas, G.C., Tsiptsis, I.N. and Siokas, A.G. (2020), "Nonlinear buckling and post-buckling of shape memory alloy shallow arches", J. Appl. Comput. Mech., 6(3), 665-683. http://doi.org/10.22055/JACM.2019.31795.1918.   DOI
99 Field, J.J., Kanakkanthara, A. and Miller, J.H. (2014), "Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function", Bioorgan. Medic. Chem., 22(18), 5050-5059. https://doi.org/10.1016/j.bmc.2014.02.035.   DOI
100 Hussain M., Naeem M.N. and Tounsi A. (2020d), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. https://doi.org/10.12989/anr.2020.8.3.229.   DOI
101 Heireche, H., Tounsi, A., Benhassaini, H., Benzair, A., Bendahmane, M. and Mokadem, S. (2010), "Nonlocal elasticity effect on vibration characteristics of protein microtubules", Phys. E Low-Dimen. Syst. Nanostr., 42(9), 2375-2379. http://doi.org/10.1016%2Fj.physe.2010.05.017.   DOI
102 Howard, J. and Hyman, A.A. (2003), "Dynamics and mechanics of the microtubule plus end", Nat., 422(6933), 753-758. https://doi.org/10.1038/nature01600.   DOI
103 Wang, C., Ru, C. and Mioduchowski, A. (2006), "Vibration of microtubules as orthotropic elastic shells", Phys. E Low-Dimen. Syst. Nanostruct., 35(1), 48-56. https://doi.org/10.1016/j.physe.2006.05.008.   DOI
104 Yi, L., Chang, T. and Ru, C. (2008), "Buckling of microtubules under bending and torsion", J. Appl. Phys., 103(10), 103516. https://doi.org/10.1063/1.2930882.   DOI
105 Hirwani, C.K. and Panda, S.K. (2020), "Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load", Eng. Comput., 36(4), 1201-1214.   DOI
106 Hirwani, C.K., Mishra, P.K. and Panda, S.K. (2021), "Nonlinear steady-state responses of weakly bonded composite shell structure under hygro-thermo-mechanical loading", Compos. Struct., 265, 113768. https://doi.org/10.1016/j.compstruct.2021.113768.   DOI
107 Hirwani, C.K., Panda, S.K. and Mishra, P.K. (2021), "Influence of debonding on nonlinear deflection responses of curved composite panel structure under hygro-thermo-mechanical loading-macro-mechanical FE approach", Int. J. Non-Linear Mech., 128, 103636. https://doi.org/10.1016/j.ijnonlinmec.2020.103636.   DOI
108 Hussain M., Naeem M.N. and Tounsi A, (2020c), "Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Constr., 9(3), 301-312. https://doi.org/10.12989/acc.2020.9.3.301.   DOI
109 Hussain M., Naeem M.N. and Tounsi A. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled Fluid-filled cylindrical shell", Adv. Comput. Des. 5(4), 363-380.   DOI
110 Hussain, M. and Naeem, M.N. (2018), "Effect of various edge conditions on free-vibration characteristics of isotropic square and rectangular plates", Adv. Eng. Test., 47.
111 Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.   DOI