• Title/Summary/Keyword: virus-cell interaction

Search Result 52, Processing Time 0.029 seconds

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1184-1192
    • /
    • 2019
  • The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.

Computational approaches for prediction of protein-protein interaction between Foot-and-mouth disease virus and Sus scrofa based on RNA-Seq

  • Park, Tamina;Kang, Myung-gyun;Nah, Jinju;Ryoo, Soyoon;Wee, Sunghwan;Baek, Seung-hwa;Ku, Bokkyung;Oh, Yeonsu;Cho, Ho-seong;Park, Daeui
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.73-83
    • /
    • 2019
  • Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.

Virus-Cell Fusion Inhibitory Compounds from Ailanthus altissima Swingle (저근백피의 Virus-Cell Fusion 저해활성 성분)

  • Chang, Young-Su;Moon, Young-Hee;Woo, Eun-Rhan
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.28-32
    • /
    • 2003
  • In order to search for the anti-HIV agents from natural products, eighty MeOH extracts of medicinal plants were applied to a syncytia formation inhibition assay which is based on the interaction between the HIV-1 envelope glycoprotein gp120/gp41 and the cellular membrane protein CD4 of T lymphocytes. Among them, Ailanthus altissima showed a potent virus-cell fusion inhibitory activity. Repeated column chromatoghaphy of the methylene chloride fraction of A. altissima afforded compounds 1$({\beta}-sitosterol-3-O-{\beta}-D-glucoside)$, 2(tetramethoxycoumarin), and 3(ocotillone). Virus-cell fusion inhibitory activity of compound 3(ocotillone) was $70.76{\pm}4.09%$ at the concentration of $100\;{\mu}g/ml$.

PKA Inhibitor KT5720, Suppressed Cytoskeletal Components Effect by Vesicular Stomatitis Virus, but did not Affect the Viral Replication

  • Kim, Young-Sook
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.282-287
    • /
    • 2007
  • The antiviral mechanism of KT5720 is known to inhibit the cAMP-dependent protein kinase (PKA), on the VSV infection in BHK-21 cell cultures. The virus inducted CPE (cell rounding) was almost completely suppressed by KT5720 at 5 uM. The inhibitor, however, did not affect the replication of the virus and the synthesis of viral macromolecules. Immunological studies showed the viral matrix (M) protein displayed intimate association with the cytoskeletal components and probably the cell rounding. KT5720, did not block the cytoskeletal disruption, while the cell rounding was suppressed. These observations suggest that the interaction between the viral M protein and the cytoskeletal components may not be enough to cause the morphological change of the cell. And, the KT5720-sensitive function may be involved in developing the VSV-induced CPE, but not essential for the virus replications.

Characterization of Prototype Foamy Virus Infectivity in Transportin 3 Knockdown Human 293t Cell Line

  • Hamid, Faysal Bin;Kim, Jinsun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.380-387
    • /
    • 2017
  • The foamy viruses are currently considered essential for development as vectors for gene delivery. Previous studies demonstrated that prototype foamy virus (PFV) can infect and replicate prevalently in a variety of cell types for its exclusive replication strategy. However, the virus-host interaction, especially PFV-transportin3 (TNPO3), is still poorly understood. In our investigation of the role of TNPO3 in PFV infection, we found lower virus production in TNPO3 knockdown (KD) cells compared with wild-type 293T cells. PCR analysis revealed that viral DNAs were mostly altered to circular forms: both 1-long terminal repeat (1-LTR) and 2-LTR in TNPO3 KD cells. We therefore suggest that TNPO3 is required for successful PFV replication, at least at/after the nuclear entry step of viral DNA. These findings highlight the obscure mysteries of PFV-host interaction and the requirement of TNPO3 for productive infection of PFV in 293T cells.

Identification of Amino Acid Residues Involved in the Interaction between Measles Virus Haemagglutin (MVH) and Its Human Cell Receptor(Signaling Lymphocyte Activation Molecule, SLAM)

  • Xu, Qin;Zhang, Peng;Hu, Chunling;Liu, Xin;Qi, Yipeng;Liu, Yingle
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.406-411
    • /
    • 2006
  • Signaling lymphocyte activation molecule (SLAM; also known as CD150) is a newly identified cellular receptor for measles virus (MV). The interaction between MV Haemagglutin (MVH) and SLAM is an initial step for MV entry. We have identified several novel SLAM binding sites at residues S429, T436 and H437 of MVH protein and MVH mutants in these residues dramatically decrease the ability to interaction with the cell surface SLAM and fail to co-precipitation with SLAM in vivo as well as malfunction in syncytium formation. At the same time, K58, S59 and H61 of SLAM was also identified to be critical for MVH and SLAM binding. Further, these residues may be useful targets for the development of measles therapy.

A Cell-based Method to Monitor the Interaction between Hepatitis B Virus Capsid and Surface Proteins

  • Kim, Yun-Kyoung;Oh, Soo-Jin;Jin, Bong-Suk;Park, Chan-Hoo;Jeon, Hye Sung;Boo, Doo-Wan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.577-581
    • /
    • 2009
  • Interactions between the surface and capsid proteins of the hepatitis B virus (HBV) are critical for the assembly of virus particles. In this study, we developed a cell-based method to visualize the interactions between the capsid and surface proteins of HBV. Capsid-GFP, a capsid protein fused to a green fluorescence protein (GFP), forms nucleocapsid-like structures in the cytoplasm of mammalian cells. It relocates to the plasma membranes in cells expressing PH-PreS, a fusion protein consisting of the PreS region of the HBV surface protein and the PH domain of PLC-$\gamma$. Membrane localization of the capsid-GFP in these cells is prevented by an inhibitory peptide that blocks the interaction between the capsid and surface proteins. This dynamic localization of capsid-GFP is applicable for screening compounds that may potentially inhibit or prevent the assembly process of HBV particles.

Virus-cell fusion inhibitory compounds from Ailanthus altissima Swingle

  • Lee, Hyang-Hee;Chang, Young-Su;Moon, Young-Hee;Woo, Eun-Rhan
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.264.1-264.1
    • /
    • 2003
  • In order to search for the anti-HIV agents from natural products, Eighty MeOH extracts of medicinal plants were applied to a syncytia formation inhibition assay which is based on the interaction between the HIV-1 envelope glycoprotein gp120/gp41 and the cellular membrane protein CD4 of T lymphocytes. Among them, Ailanthus altissima showed a potent virus-cell fusion inhibitory activity. (omitted)

  • PDF

Receptor-Mediated Endocytosis of Hepatitis B Virus PreS1d Protein in EBV-Transformed B-Cell line

  • Park, Jung-Hyun;Cho, Eun-Wie;Lee, Dong-Gun;Park, Jung-Min;Lee, Yun-Jung;Choi, Eun-A;Kim, Kill-Lyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.844-850
    • /
    • 2000
  • The specific binding and internalization of viral particles is an essential step for the successful infection of viral pathogens. In the case of the hepatitis B virus (HBV), virions bind to the host cell via the preS domain of the viral surface antigen and are subsequently internalized by endocytosis. HBV-preS specific receptors are primarily expressed on hepatocytes, however, viral DNA and proteins have also been detected in extrahepatic sites, suggsting that celluar recepators for HBV may also exist on extrahepatic cells. Recently, an EBV-transformed B-cell line was identified onto which the preS region binds in a receptor-ligand specific manner. In this study, this specific interaction was further characterized, and the binding region within the preS protein was locaized. Also the internalization after host cell attachment was visualized and analyzed by fluorescence-labeled HBV-preS1 proteins using confocal microscopy. Energy depletion by sodium azide treatment effectively inhibited the internalization of the membrane-bound preS1 ligands, thereby indicating an energy-dependent receptor-mediated endocytotic pathway. Accordingly, the interaction of HBV-pres! with this specific B-cell line may serve as an effective model for an infection pathway in extrahepatic cells.

  • PDF

Infection and Pathogenesis Mechanisms of Marek's Disease Virus (마렉병 바이러스 감염과 병원성 발현 기전)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.1
    • /
    • pp.39-55
    • /
    • 2008
  • Like the other herpesviruses, the virion of MDV consists of an envelope, which surrounds an amorphous tegument. Within the tegument, and icosahedral capsid encloses a linear double-stranded DNA core. Although the genome structure of MDV indicates that it is an ${\alpha}-herpesvirus$ like herpes simplex and varicella-zoster viruses, biological properties indicate MDV is more akin to the ${\gamma}-herpesvirus$ group, which includes Epstein-Barr and Kaposi's sarcoma herpesviruses. These herpesviruses replicate lytically in lymphocytes, epithelial and fibroblastic cells, and persist in lymphoblastoid cells. MDV has a complex life cycle and uses two means of replication, productive and non-productive, to exist and propagate. The method of reproduction changes according to a defined pattern depending on changes in virus-cell interactions at different stages of the disease, and in different tissues. Productive (lytic) interactions involve active invasion and take-over of the host cell, resulting in the production of infectious progeny virions. However, some herpesviruses, including MDV, can also establish a non-productive (abortive) infection in certain cell types, resulting in production of cell-associated progeny virus. Non-productive interactions represent persistent infection, in which the viral genome is present but gene expression is limited, there is no structural or regulatory gene translation, no replication, no release of progeny virions and no cell death. Reactivation of the virus is rare, and usually the infectious virus can be re-isolated only after cultivation in vitro. MDV establishes latency in lymphoid cells, some of which are subsequently transformed. In this review article, recent knowledges of the pathogenesis mechanisms followed by MDV infection to sensitive cells and chickens are discussed precisely.