• 제목/요약/키워드: virus resistant

검색결과 327건 처리시간 0.029초

Comparison of Forage Productivity and Outbreak Rate Between Corn Varieties in Rice Black-Streaked Dwarf Virus (RBSDV) Prevalent Area (검은줄오갈병 발생이 심한 지역에서 옥수수 품종의 발병률과 사초 생산성 비교)

  • Choi, Gi Jun;Lim, Young Chul;Yoon, Sei Hyung;Ji, Hee Chung;Lee, Sang-Hoon;Jung, Min Woong;Seo, Sung;Park, Hyung Soo;Kim, Ki-Yong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제33권2호
    • /
    • pp.111-116
    • /
    • 2013
  • This experiment was carried out to select a resistant corn variety for rice black-streaked dwarf virus (RBSDV) disease in a RBSDV prevalent area (Gochang of Jeollabukdo) from 2006 to 2008. Ten corn varieties for silage preparation were cultivated with first cropping and second cropping system in an RBSDV field, and were tested outbreak rates of RBSDV and dry matter (DM) yield of forage. The outbreak rates of RBSDV were significantly different between corn varieties. Therefore, the resistance degree of corn varieties for RBSDV were divided into 4 groups; very resistant ('Kwangpeyongok' and 'Kwanganok'), resistant ('P3156' and 'P3394'), mildly resistant ('Cheonganok' and 'P32P75') and susceptible ('Suwon19', 'DK697' and 'GW6959') groups respectively. DM yield of forage in RBSDV fields exhibited comparatively significant differences between varieties (p<0.05). DM yield of resistant varieties ('Kwangpeyongok', 'Kwanganok', 'P3156' and 'P3394'), were higher (14~26%) than those of susceptible varieties ('Suwon 19', 'DK697' and 'GW6959'). Therefore, resistant varieties were recommended for increasing forage productivity in field of RBSDV prevalent areas.

First Outcome of MDR-TB among Co-Infected HIV/TB Patients from South-West Iran

  • Motamedifar, Mohammad;Ebrahim-Saraie, Hadi Sedigh;Abadi, Ali Reza Hassan;Moghadam, Mahboube Nakhzari
    • Tuberculosis and Respiratory Diseases
    • /
    • 제78권3호
    • /
    • pp.253-257
    • /
    • 2015
  • Background: Tuberculosis (TB) is the leading cause of mortality among human immunodeficiency virus (HIV) patients and the majority of them occur in developing countries. The aims of the present study were to determine the frequency of HIV/TB co-infection and other probable associated factors. Methods: This 10 year retrospective study was conducted on 824 HIV patients in the south-west of Iran. HIV infection was diagnosed by the enzyme linked immunosorbent assay and confirmed by Western blot. TB diagnosis was based on consistency of the clinical manifestations, chest X-ray, and microscopic examination. Drug susceptibility testing was done by the proportional method on $L{\ddot{o}}wenstein$-Jensen media. Results: Of 824 HIV patients, 59 (7.2%) were identified as TB co-infected and the majority (86.4%) of them were male. Of the overall TB infected patients, 6 cases (10.2%) showed multidrug-resistant with the mean CD4+ lymphocyte count of $163{\pm}166cells/mm^3$. The main clinical forms of TB were pulmonary (73%). There was a significant (p<0.05) correlation between TB infection and CD4+ lymphocyte counts ${\leq}200cells/mm^3$, gender, prison history, addiction history, and highly active anti-retroviral therapy. Conclusion: We reported novel information on frequency of HIV/TB co-infection and multidrug resistant-TB outcome among co-infected patients that could facilitate better management of such infections on a global scale.

Environmental Risk Assessment of Watermelon Grafted onto Transgenic Rootstock Resistant to Cucumber Green Mottle Mosaic Virus (CGMMV) on Non-Target Insects in Conventional Agro-Ecosystem

  • Yi, Hoon-Bok;Park, Ji-Eun;Kwon, Min-Chul;Park, Sang-Kyu;Kim, Chang-Gi;Jeong, Soon-Chun;Yoon, Won-Kee;Park, Sang-Mi;Han, Sang-Lyul;Harn, Chee-Hark;Kim, Hwan-Mook
    • Journal of Ecology and Environment
    • /
    • 제29권4호
    • /
    • pp.323-330
    • /
    • 2006
  • We investigated the impact of watermelon grafted onto Cucumber Green Mottle Mosaic Virus (CGMMV)-resistant transgenic watermelon rootstock on insects as non-target organisms in a greenhouse in 2005. We quantitatively collected insect assemblages living on leaves and flowers, and we used sticky traps to collect alate insects. We compared the patterns of insect assemblages and community composition, cotton aphid (Aphis gossypii Glover) on watermelon leaves and western flower thrip (Frankliniella occidentalis Trybom) on watermelon male flowers, between CGMMV-resistant transgenic watermelon (TR) and non-transgenic watermelon (nTR). Non-parametric multidimensional scaling (NMS) ordination verified that insect assemblages on leaves and sticky traps were different between TR and nTR (P<0.05). The insect assemblages on male flowers were not statistically significant. Multi-response permutation procedures proofed our results from NMS results (P>0.05). Conclusively, TR watermelons appear to have some adverse effects on the population of cotton aphids on leaves and sticky traps, but watermelon male flowers do not show an adverse effect. Further research is required to assess the effect of TR on the aphid and western flower thrip. Life table experiments might support the specific reason for the adverse effects from leaf assemblages. Assessment of non-target impacts is an essential part of the risk assessment of non-target insects for the impact of transgenic organisms.

Development of a Single-nucleotide Polymorphism Marker for the Sw-5b Gene Conferring Disease Resistance to Tomato spotted wilt virus in Tomato

  • Lee, Hyung Jin;Kim, Boyoung;Bae, Chungyun;Kang, Won-Hee;Kang, Byoung-Cheorl;Yeam, Inhwa;Oh, Chang-Sik
    • Horticultural Science & Technology
    • /
    • 제33권5호
    • /
    • pp.730-736
    • /
    • 2015
  • Tomato spotted wilt virus (TSWV) causes one of the most destructive viral diseases that threatens global tomato production. Sw-5b was reported as the resistance gene effective against TSWV. The objective of this research was to develop a single-nucleotide polymorphism (SNP) marker to distinguish tomato cultivars resistant to TSWV from susceptible cultivars for marker-assisted breeding. First, we determined genotypes for TSWV resistance in 32 commercial tomato cultivars using the previously reported Sw-5b gene-based marker. Then, DNA sequences of Sw-5b alleles in tomato cultivars showing resistant or susceptible genotypes were analyzed; a single SNP was found to distinguish tomato cultivars resistant to TSWV from susceptible cultivars. Based on the confirmed SNP, a SNP primer pair was designed. Using this new SNP sequence and high-resolution melting analysis, the same 32 tomato cultivars were screened. The results were perfectly correlated with those from screening with the Sw-5b gene-based marker. These results indicate that the SNP maker developed in this study will be useful for better tracking of resistance to TSWV in tomato breeding.

Detection of the expression of a Bombyx mori Atypical Protein Kinase C in BmPLV-Infected Larval Midgut

  • Cao, Jian;He, Yuanqing;Li, Guohui;Chen, Keping;Kong, Jie;Wang, Fenghua;Shi, Jing;Yao, Qin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제22권2호
    • /
    • pp.59-64
    • /
    • 2011
  • Protein kinase C (PKC) is involved in many cellular signaling pathways, it participates in many physiological processes, such as cell cycle, growth, proliferation, differentiation and apoptosis. To investigate the effect of PKC on the silkworm midgut tissue infection of Bombyx mori parvo-like virus (BmPLV), a B. mori atypical protein kinase C (BmaPKC) gene was cloned from larval midgut tissue, expressed in E. coli and purified. Additionally, the BmPLV susceptible silkworm strain and resistant silkworm strain were used to test the effect of the B. mori infection on BmPLV. The result showed that BmaPKC encodes a predicted 586 amino acid protein, which contains a C-terminal kinase domain and an N-terminal regulatory domain. The maximum expression amount of the soluble (His)6-tagged fusion protein was detected after 0.8 mmol/L IPTG was added and cultured at $21^{\circ}C$. The (His) 6-tagged fusion protein revealed about 73 kDa molecular weight which confirmed by western blot and mass spectrography. Furthermore BmaPKC protein were detected at 0-72 h post-infection in BmPLVinfected larval midgut tissue, western blot showed that as time went on, the expression of BmaPKC increased gradually in susceptible strain, the expression quantity on 72 h is 5 times of 0 h. However, in resistant strain, the expression quantity is slightly lower than susceptible strain. But no significant change in resistant strain was observed as time went on. The available data suggest that BmaPKC may involve in the regulation of BmPLV proliferation.

Application of a Promoter Isolated from Chlorella Virus in Chlorella Transformation System

  • Park, Hyoun-Hyang;Park, Tae-Jin
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.158-163
    • /
    • 2004
  • Chlorella is a eukaryotic microalgae which shares metabolic pathways with higher plants. These charac-teristics make chlorella a potential candidate for eukaryotic overexpression systems. Recently, a foreign flounder growth hormone gene was stably introduced and expressed in transformed Chlorella ellipsoidea by using a modified plant transformation vector that contains cauliflower mosaic virus (CaMV) 35S pro-moter and the phleomycin resistant Sh ble gene as a selection marker. In this study, this same vector was modified by incorporating a promoter and a 3' UTR region of the 33kDa peptide gene from a chlorella virus that was isolated in our laboratory. The 33kDa gene promoter was used to replace the 35S promoter and the 3' UTR was introduced to separate the target gene and downstream Sh ble gene. Three different chlorella transformation vectors containing human erythropoietin (EPO) gene were constructed. The mp335EPO vector consists of a promoter from the 33kDa peptide gene, whereas the mp3353EPO vector contains the same promoter from the 33kDa peptide gene and its 3' UTR. The mp35S33pEPO vector contains the 35S promoter and the 3' UTR from the 33 kDa peptide gene. There was no significant difference in the expression levels of EPO protein in chlorella cells transformed with either of three of the transformation vectors. These data indicate that the promoters from the chlorella virus are comparable to the most common CaMV 35S promoter. Furthermore, these data suggest that other promoters from this virus can be used in future construction of chlorella transformation system for higher expression of target proteins.

Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses

  • Samra Mirzayeva;Irada Huseynova;Canan Yuksel Ozmen;Ali Ergul
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.466-485
    • /
    • 2023
  • Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.

Occurrence of Viruses Infecting Foxtail Millet (Setaria italica) in South Korea (국내에 발생하는 조 바이러스의 종류 및 발생 실태)

  • Park, Chung Youl;Min, Hyun-Geun;Lee, Hong-Kyu;Yeom, Yoon Ah;Oh, Jonghee;Kim, Bong-Sub;Bae, Dae-Hyeon;Yoon, Young-Nam;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • 제23권1호
    • /
    • pp.69-74
    • /
    • 2017
  • In 2015, a nationwide survey was carried out to investigate about occurrence pattern of virus infecting foxtail millet. A total 100 foxtail millet leaf samples showing virus-like and abnormal symptoms were collected in the seven main cultivated regions of Korea. Four viruses were identified using reverse transcription polymerase chain reaction and RNA sequencing. Of the collected 100 foxtail millet samples, 10 were Barley virus G (BVG), 4 were Rice stripe virus (RSV), 1 was Northern cereal mosaic virus (NCMV), and 1 was Sugarcane yellow leaf virus (ScYLV) infection. To our best knowledge, this is the first report of BVG and NCMV infecting foxtail millet in Korea and ScYLV is expected as new Polerovirus species. This research will be useful in breeding for improved disease-resistant foxtail millet cultivars.

Cloning and Phylogenetic Characterization of Coat Protein Genes of Two Isolates of Apple mosaic virus from ¡?Fuji¡? Apple

  • Lee, Gung-Pyo;Ryu, Ki-Hyun;Kim, Hyun-Ran;Kim, Chung-Sun;Lee, Dong-Woo;Kim, Jeong-Soo;Park, Min-Hye;Noh, Young-Mi;Choi, Sun-Hee;Han, Dong-Hyun;Lee, Chang-Hoo
    • The Plant Pathology Journal
    • /
    • 제18권5호
    • /
    • pp.259-265
    • /
    • 2002
  • Apple mosaic virus (ApMV), a member of the genus Ilarvirus, was detected and isolated from diseased 'Fuji' apple (Malus domestica) in Korea. The coat protein (CP) genes of two ApMV strains, denoted as ApMV-Kl and ApMV-K2, were amplified by using the reverse transcription and polymerase chain reaction (RT-PCR) and were analyzed thereafter. The objectives were to define the molecular variability of genomic information of ApMV found in Korea and to develop virus-derived resistant gene source for making virus-resistant trans-genic apple. RT-PCR amplicons for the APMVS were cloned and their nucleotide sequences were determined. The CPs of ApMV-Kl and ApMV-K2 consisted of 222 and 232 amino acid residues, respectively. The identities of the CPs of the two Korean APMVS were 93.1% and 85.6% at the nucleotide and amino acid sequences, respectively. The CP of ApMV-Kl showed 46.1-100% and 43.2-100% identities to eight different ApMV strains at the nucleotide and amino acid levels, respectively. When ApMV-PV32 strain was not included in the analysis, ApMV strains shared over 83.0% and 78.6% homologies at the nucleotide and amino acid levels, respectively. ApMV strains showed heterogeneity in CP size and sequence variability. Most of the amino acid residue differences were located at the N-termini of the strains of ApMV, whereas, the middle regions and C-termini were remarkably conserved. The APMVS were 17.(1-54.5% identical with three other species of the genus Ilarviyus. ApMV strains can be classified into three subgroups (subgroups I, II, and III) based on the phylogenetic analysis of CP gene in both nucleotide and amino acid levels. Interestingly, all the strains of subgroup I were isolated from apple plants, while the strains of subgroups II and III were originated from peach, hop, or pear, The results suggest that ApMV strains co-evolved with their host plants, which may have resulted in the CP heterogeneity.

Comparative Inactivation of Hepatitis A Virus and Murine Encephalomyocarditis Virus to Various Inactivation Processes (바이러스 불활화 공정에 대한 Hepatitis A Virus와 Murine Encephalomyocarditis Virus의 민감도 비교)

  • Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • 제39권4호
    • /
    • pp.242-247
    • /
    • 2003
  • Murine encephalomyocarditis virus (EMCV) has been used as a surrogate for hepatitis A virus (HAV) for the validation of virus removal and/or inactivation during the manufacturing process of biopharmaceuticals. Recently international regulation for the validation of HAV safety has been reinforced because of the reported cases of HAV transmission to hemophiliac patients who had received ntihemophilic factors prepared from human plasma. The purpose of the present study was to compare the resistance of HAV and EMCV to various viral inactivation processes and then to standardize the HAV validation method. HAV was more resistant than EMCV to pasteurization (60oC heat treatment for 10 hr), low pH incubation (pH 3.9 at 25oC for 14 days), 0.1 M NaOH treatment, and lyophilization. EMCV was completely inactivated to undetectable levels within 2 hr of pasteurization, however, HAV was completely inactivated to undetectable levels after 5 hr treatment. EMCV was completely inactivated to undetectable levels within 15 min of 0.1 M NaOH treatment, however, residual infectivity of HAV still remained even after 120 min of treatment. The log reduction factors achieved during low pH incubation were 1.63 for HAV and 3.84 for EMCV. Also the log reduction factors achieved during a lyophilization process of antihemophilic factor VIII were 1.21 for HAV and 4.57 for EMCV. These results indicate that HAV rather than EMCV should be used for the virus validation study and the validation results obtained using EMCV should be precisely reviewed.