• Title/Summary/Keyword: virulence genes

Search Result 318, Processing Time 0.025 seconds

Exploration of Virulence Markers and Genes of Listeria monocytogenes Isolated from Animal Products (축산물유래 Listeria monocytogenes의 virulence marker 및 gene 조사)

  • Yi, Chul-Hyeon;Song, Hyeon-Ho;Kim, Mi-Ryung;Kang, Ho-Jo;Son, Won-Geun
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.248-256
    • /
    • 2008
  • To investigate the epidemiological characteristics of 68 Listeria monocytogenes isolates, including 11 reference strains and 57 isolates from imported US beef, domestic meats(beef, pork, chicken meat), raw milk, and milk plants. L. monocytogenes was to evaluate the production of virulence proteins, such as hemolysin(LLO) and lecithinase(LCP), the adsorption of Congo red(CRA), and to detect virulence genes using the polymerase chain reaction(PCR). In the study of virulence protein production, 68(100%), 62(91.2%), and 54(79.4%) of the 68 L. monocytogenes strains were positive for LLO production, the LCP test, and the CRA test, respectively, while strains of other species, such as L. innocua, L. gray, L. murrayi, and L. welshimeri, were not. There were no significant differences between L. monocytogenes serotypes and the ability to produce LLO or LCP. L. monocytogenesstrains had very high hemolytic titers(2 to 16 fold), while the other Listeria species, other than L. ivanovii and L. seeligeri, did not. The hemolysin activities of L. monocytogenes, L. ivanovii, and L. seeligeri usually exceeded 1.0 HU/mg, while those of other Listeria spp. were less than 0.04 HU/mg. In the PCR assay, all of the L. monocytogenes strains contained the hlyA, plcA, plcB, inlA, and inlB virulence genes and produced a product of the expected size. In the PCR of the actA gene, the expected 385-bp product was seen in 39(57.4%) L. monocytogenesstrains, while an unexpected 268-bp product was seen in 29(42.6%) strains. Most L. monocytogenes strains isolated from Hanwoo beef produced the 385-bp actA gene product, while strains of imported US beef usually produced the 268-bp actA gene product. By contrast, no virulence gene products were amplified in the other Listeria spp.

Whole-Genome Sequencing-based Antimicrobial Resistance and Genetic Profile Analysis of Vibrio parahaemolyticus Isolated from Seafood in Korea (유통 수산물에서 분리한 Vibrio parahaemolyticus의 항생제 내성 및 전장 유전체 분석을 통한 유전적 특성 분석)

  • Gyeong Gyu Song;Hyeonwoo Cho;Yeona Kim;Beomsoon Jang;Miru Lee;Kun Taek Park
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.231-238
    • /
    • 2024
  • Vibrio parahaemolyticus is a major seafood-borne pathogen commonly detected in marine environments. In Korea, V. parahaemolyticus-induced foodborne illnesses account for 7.5% of bacterial pathogen-related food poisonings. Moreover, the amount of antimicrobial agents used in aquatic cultures is continuously increasing. In this study, we isolated V. parahaemolyticus from seafood samples and performed antimicrobial susceptibility tests using the microbroth dilution method. Furthermore, using whole-genome sequencing, we identified antimicrobial resistance genes, virulence genes, and sequence types (STs). We could isolate V. parahaemolyticus from 47 (59.5%) of the 79 seafood samples we purchased from retail markets in Seoul and Chungcheong provinces. Antimicrobial susceptibility tests revealed that 2 and all of the 47 isolates were ampicillin-resistant (4.3%) and susceptible to all tested antimicrobial agents (100%), respectively. The genotype analysis revealed that all isolates carried beta-lactam-, tetracycline-, and chloramphenicol-associated antimicrobial resistance genes. However, we could detect fosfomycin resistance only in one isolate. Concerning the virulence genes, we detected T3SS1 and T3SS2-associated genes in all and one isolate, respectively. However, we could not detect the tdh and trh genes. Of the 47 isolates, 17 belonged to 15 different STs, including ST 658 with 3 isolates. The rest 30 isolates were identified as 25 new STs. The results of this study support the need for operating a continuous monitoring system to prevent foodborne illnesses and the spread of antimicrobial resistance genes in V. parahaemolyticus.

Characterization of Pasteurella multocida from pneumonic lungs of slaughtered pigs in Korea

  • Kim, Jong Ho;Kim, Jong Wan;Oh, Sang-Ik;Kim, Chung Hyun;So, ByungJae;Kim, Won-Il;Kim, Ha-Young
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.3
    • /
    • pp.203-210
    • /
    • 2018
  • Pasteurella multocida is an opportunistic organism that plays a significant role in porcine respiratory disease complex (PRDC). In the current study, we provide nationwide information of P. multocida isolates from pneumonic lungs of slaughter pigs by determining their prevalence, subspecies, biovars, capsular types, virulence-associated genes, and minimum inhibitory concentrations. P. multocida was the second most frequently confirmed (19.2%) bacterial pathogen and most of the isolates (88.9%) showed simultaneous infection with other respiratory pathogens, especially Mycoplasma hyopneumoniae (63.3%, P<0.001) and porcine circovirus type 2 (53.3%, P=0.0205). Of 42 isolates investigated, 41 (97.6%) were identified as P. multocida subspecies multocida, and only one isolate was identified as subspecies septica (biovar 5). All the isolates were capsular type A and the most prevalent biovar was biovar 3 (40.5%), followed by biovar 2 (31.0%). Comparing virulence-associated genes and biovars, all biovar 2 isolates exhibited $hgbB^-pfhA^+$ (P<0.001); all biovar 3 (P=0.0002) and biovar 13 (P=0.0063) isolates presented $hgbB^+pfhA^-$. Additionally, all biovar 2 (P=0.0037) isolates and most of biovar 3 (P=0.0265) isolates harbored tadD. P. multocida showed the highest resistance levels to oxytetracycline (73.8%), followed by florfenicol (11.9%). Continuous monitoring is required for surveillance of the antimicrobial resistance and new emerging strains of P. multocida in slaughter lines.

Antimicrobial Resistance and Minimum Inhibitory Concentrations of Vibrio parahaemolyticus Strains Isolated from Gomso Bay, Korea (곰소만 해역 해수에서 분리한 장염비브리오(Vibrio parahaemolyticus)의 항균제 내성 및 최소발육억제농도의 구명)

  • Kim, Tae-Ok;Um, In-Seon;Kim, Hee-Dai;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.582-588
    • /
    • 2016
  • Seventy-nine Vibrio parahaemolyticus isolates from surface seawater from Gomso Bay, west coast of Korea, were analyzed for the presence of virulence genes and their susceptibility to 30 different antimicrobials. All 79 isolates were examined for the presence of two virulence genes (tdh or trh) using polymerase chain reaction (PCR); however, no isolates possessed either the tdh or trh gene. According to a disk diffusion susceptibility test, all of the strains studied were resistant to oxacillin, penicillin, and vancomycin, followed by ticarcillin (97.5%), ampicillin (96.2%), clindamycin (86.1%), erythromycin (10.1%), streptomycin (7.6%), cefoxitin (6.3%), amikacin (2.5%), and cephalothin (2.5%). However, all of the strains were susceptible to 19 other antimicrobials including cefepime, cefotaxime, chloramphenicol, gentamycin, nalidixic acid, sulfamethoxazole/trimethoprim, and trimethoprim. All 79 isolates (100%) were resistant to four or more classes of antimicrobials, and two strains exhibited resistance to eight antimicrobial agents. The average minimum inhibitory concentrations (MICs) for V. parahaemolyticus for ampicillin, penicillin, ticarcillin, and vacomycin were 946.5, 1,305.9, 1,032.3, and 45.0 µg/mL, respectively.

Antimicrobial Resistance and Minimum Inhibitory Concentrations of Vibrio parahaemolyticus Strains Isolated from Seawater and Commercial Fisheries (해수 및 시판 수산물에서 분리한 장염비브리오균(Vibrio parahaemolyticus)의 항균제 내성 및 최소발육억제농도의 규명)

  • Cho, Eui-Dong;Kim, Hee-Dai;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.6
    • /
    • pp.587-595
    • /
    • 2019
  • Eighty-three Vibrio parahaemolyticus isolates from surface seawater in Gomso Bay on the west coast of Korea, and commercial fisheries from Gunsan fisheries center were analyzed for the presence of virulence genes and susceptibility to 30 different antimicrobials. All 83 isolates were examined for the presence of two virulence genes (tdh or trh) using polymerase chain reaction; however, neither gene was found in any of the isolates. A disk diffusion susceptibility test, showed that all of the strains studied were resistant to clindamycin, oxacillin, ticarcillin, and vancomycin, and also revealed varying levels of resistance to ampicillin (98.8%), penicillin G (95.2%), streptomycin (20.5%), cefoxitin (14.5%), amikacin (6.0%), cephalothin (4.8%), and erythromycin (3.6%). However, all of the strains were susceptible to 19 other antimicrobial agents, including cefepime, cefotaxime, chloramphenicol, gentamycin, nalidixic acid, sulfamethoxazole/trimethoprim, and trimethoprim. All 83 isolates (100%) were resistant to five or more classes of antimicrobials, and two strains exhibited resistance to ten antimicrobial agents. The average minimum inhibitory concentrations against V. parahaemolyticus of clindamycin, oxacillin, ticarcillin, and vancomycin were 55.9, 98.3, 499.3, and 44.3 ㎍/mL, respectively. These results provide new insight into the necessity for seawater sanitation in Gomso Bay and commercial fisheries, and provide evidence to help reduce the risk of contamination by antimicrobial-resistant bacteria.

Genomic Insights and Its Comparative Analysis with Yersinia enterocolitica Reveals the Potential Virulence Determinants and Further Pathogenicity for Foodborne Outbreaks

  • Gnanasekaran, Gopalsamy;Na, Eun Jung;Chung, Han Young;Kim, Suyeon;Kim, You-Tae;Kwak, Woori;Kim, Heebal;Ryu, Sangryeol;Choi, Sang Ho;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.262-270
    • /
    • 2017
  • Yersinia enterocolitica is a well-known foodborne pathogen causing gastrointestinal infections worldwide. The strain Y. enterocolitica FORC_002 was isolated from the gill of flatfish (plaice) and its genome was sequenced. The genomic DNA consists of 4,837,317 bp with a GC content of 47.1%, and is predicted to contain 4,221 open reading frames, 81 tRNA genes, and 26 rRNA genes. Interestingly, genomic analysis revealed pathogenesis and host immune evasion-associated genes encoding guanylate cyclase (Yst), invasin (Ail and Inv), outer membrane protein (Yops), autotransporter adhesin A (YadA), RTX-like toxins, and a type III secretion system. In particular, guanylate cyclase is a heat-stable enterotoxin causing Yersinia-associated diarrhea, and RTX-like toxins are responsible for attachment to integrin on the target cell for cytotoxic action. This genome can be used to identify virulence factors that can be applied for the development of novel biomarkers for the rapid detection of this pathogen in foods.

Antibiotic Resistance and Safety Assessment of Enterococcus faecium CKDB003 for Using as Probiotics (프로바이오틱스 Enterococcus faecium CKDB003의 항생제 내성 및 안전성 평가)

  • Kim, Han Jun;Kang, Soon Ah
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.3
    • /
    • pp.223-236
    • /
    • 2020
  • In this study, a safety evaluation was conducted to confirm if the Enterococcus faecium CKDB003 strain obtained by selection from a mixed fermentation of fruit and milk is suitable for use as a probiotic. The MIC value for the 10 antibiotics specified in the EFSA guidance was below the acceptable cut-off value. The antibiotic resistance genes aac(6')-li, eatAv, and msr(C) exist by whole genome sequencing, but are in the chromosome and not in the plasmid, thus confirming that there is no possibility of transmission to other microorganisms. It was confirmed that cytolysin (cylA, cylB, cylI, cylL-l, cylL-s, cylM, cylR1, cylR2), aggregation substance (asa1, asp1), collagen adhesion (ace), enterococcal surface protein (esp), endocarditis antigen (efaA), hyaluronidase (hyl) and gelatinase (gelE) were not present in the genome by examining the genes of factors related to virulence. Also, the biochemical analysis showed no toxic enzyme activities, and no virulence genes were detected by the PCR method. Thus, the E. faecium CKDB003 strain can be safely used as a health functional food probiotic, based on the results of the safety assessment.

Putative response regulator two-component gene, CaSKN7, regulate differentiation and virulence in Candida albicans

  • Lee, Jung-Shin;Minyoung Lim;Yim, Hyung-Soon;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.50-50
    • /
    • 2003
  • We have identified and analysed a putative response regulator two-component gene (CaSKN7) from Candida albicans and its encoding protein (CaSkn7). CaSKN7 has an open reading frame of 1677bp. CaSKN7 encodes a 559 amino acid protein (CaSkn7) with an estimated molecular mass of 61.1 kDa. CaSKN7 is a homologue of a Saccharomyces cerevisiae SKN7 that is the regulator involved in the oxidative stress response. To study the role of CaSKN7, we constructed a CAI4-derived mutant strain carrying a homozygous deletion of the CaSKN7 gene. In the caskn7 disruptant cells, the formation of germ tube require shorter time than that in the congenic wild-type strain but the growth of mycelium delayed in liquid media. In contrast, the caskn7 disruptant cells attenuate the differentiation in solid media and the virulence in mouse model system. Expression level of hypha-specific and virulence genes - HYR1, ECE1, HWP1, and ALS1 - in the caskn7 disruptant cells increased as compared with that in the congenic wild-type strain in 10% serum YPD. Skn7 in 5. cerevisiae was found to bind the HSE element from the SSA promoter, Also, CaSkn7 contains heat shock factor DNA-binding domain and the promoters of these genes have HSE-like sties. Therefore these results show that CaSKN7 regulate the differentiation and virulence of C. albicans.

  • PDF

Molecular characteristics of Escherichia coli from bulk tank milk in Korea

  • Yoon, Sunghyun;Lee, Young Ju
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.9.1-9.11
    • /
    • 2022
  • Background: Escherichia coli, which causes subclinical or clinical mastitis in cattle, is responsible for transmitting antimicrobial resistance via human consumption of raw milk or raw milk products. Objectives: The objective of this study was to investigate the molecular characteristics of 183 E. coli from bulk tank milk of five different dairy factories in Korea. Methods: The molecular characteristics of E. coli such as serogroup, virulence, antimicrobial resistance, and integron genes were detected using polymerase chain reaction and antimicrobial susceptibility were tested using the disk diffusion test. Results: In the distribution of phylogenetic groups, group D was the most prevalent (59.6%) and followed by group B1 (25.1%). The most predominant serogroup was O173 (15.3%), and a total of 46 different serotypes were detected. The virulence gene found most often was fimH (73.2%), and stx1, fimH, incC, fyuA, and iutA genes were significantly higher in isolates of phylogenetic group B1 compared to phylogenetic groups A, B2, and D (p < 0.05). Among 64 E. coli isolates that showed resistance to at least one antimicrobial, the highest resistance rate was observed for tetracyclines (37.5%). All 18 integron-positive E. coli carried the integron class I (int1) gene, and three different gene cassette arrangements, dfrA12+aadA2 (2 isolates), aac(6')-Ib3+aac(6')-Ib-cr+aadA4 (2 isolates), and dfrA17+aadA5 (1 isolate) were detected. Conclusions: These data suggest that the E. coli from bulk tank milk can be an indicator for dissemination of antimicrobial resistance and virulence factors via cross-contamination.

Investigation on antimicrobial resistance genes of Salmonella Schwarzengrund isolated from pigs (돼지유래 Salmonella Schwarzengrund의 약제내성 유전자에 관한 연구)

  • Lee, Woo-Won;Kim, Sang-Hyun;Lee, Seung-Mi;Lee, Gang-Rok;Lee, Gi-Heun;Kim, Yong-Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • To detect the virulence genes (invA and spvC) and antimicrobial resistance genes, polymerase chain reaction (PCR) was carried out using total 67 strains of S. Schwarzengrund isolated from pigs. As results, invA was detected from all 67 strains of S. Schwarzengrund, however, spvC was not at all. All 12 strains with ampicillin resistance, 15 strains with chloramphenicol resistance, 9 strains with kanamycin resistance, 1 strain with sulfamethoxazole/trimethoprim resistance, and 66 (98.5%) of 67 strains with tetracycline resistance carried TEM (${\beta}$-lactamase $bla_{TEM}$), cmlA (nonenzymatic chloramphenicol resistance), aphA1-Iab (aminoglycoside phosphotransferase), sulII (dihydropteroate synthase), and tetA (class A tetracycline resistance), respectively. All 63 strains with streptomycin resistance carried 3 aminoglycoside resistance genes, including aadA (aminoglycoside adenyltransferase), strA, and strB (streptomycin phosphotransferase). With respect to prevalence of antibiotic resistance genes occurred in S. Schwarzengrund, genes for strB (46.0%); strA and strB (30.2%); aadA, strA, and strB (9.5%); strA (7.9%); aadA and strB (3.2%); and aadA (3.2%) were detected by PCR.