Browse > Article
http://dx.doi.org/10.4014/jmb.1611.11048

Genomic Insights and Its Comparative Analysis with Yersinia enterocolitica Reveals the Potential Virulence Determinants and Further Pathogenicity for Foodborne Outbreaks  

Gnanasekaran, Gopalsamy (Department of Agricultural Biotechnology, Seoul National University)
Na, Eun Jung (Department of Agricultural Biotechnology, Seoul National University)
Chung, Han Young (Department of Agricultural Biotechnology, Seoul National University)
Kim, Suyeon (Department of Agricultural Biotechnology, Seoul National University)
Kim, You-Tae (Food-borne Pathogen Omics Research Center (FORC), Seoul National University)
Kwak, Woori (Department of Agricultural Biotechnology, Seoul National University)
Kim, Heebal (Department of Agricultural Biotechnology, Seoul National University)
Ryu, Sangryeol (Department of Agricultural Biotechnology, Seoul National University)
Choi, Sang Ho (Department of Agricultural Biotechnology, Seoul National University)
Lee, Ju-Hoon (Food-borne Pathogen Omics Research Center (FORC), Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.2, 2017 , pp. 262-270 More about this Journal
Abstract
Yersinia enterocolitica is a well-known foodborne pathogen causing gastrointestinal infections worldwide. The strain Y. enterocolitica FORC_002 was isolated from the gill of flatfish (plaice) and its genome was sequenced. The genomic DNA consists of 4,837,317 bp with a GC content of 47.1%, and is predicted to contain 4,221 open reading frames, 81 tRNA genes, and 26 rRNA genes. Interestingly, genomic analysis revealed pathogenesis and host immune evasion-associated genes encoding guanylate cyclase (Yst), invasin (Ail and Inv), outer membrane protein (Yops), autotransporter adhesin A (YadA), RTX-like toxins, and a type III secretion system. In particular, guanylate cyclase is a heat-stable enterotoxin causing Yersinia-associated diarrhea, and RTX-like toxins are responsible for attachment to integrin on the target cell for cytotoxic action. This genome can be used to identify virulence factors that can be applied for the development of novel biomarkers for the rapid detection of this pathogen in foods.
Keywords
Yersinia enterocolitica; genome; type III secretion system; virulence factor; food poisoning; gastroenteritis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fabrega A, Vila J. 2012. Yersinia enterocolitica: pathogenesis, virulence and antimicrobial resistance. Enferm. Infecc. Microbiol. Clin. 30: 24-32.   DOI
2 Nishi J, Sheikh J, Mizuguchi K, Luisi B, Burland V, Boutin A, et al. 2003. The export of coat protein from enteroaggregative Escherichia coli by a specific ATP-binding cassette transporter system. J. Biol. Chem. 278: 45680-45689.   DOI
3 Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R. 1998. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280: 2129-2132.   DOI
4 Fallman M, Deleuil F, McGee K. 2001. Resistance to phagocytosis by Yersinia. Int. J. Med. Microbiol. 291: 501-509.   DOI
5 Grissa I, Vergnaud G, Pourcel C. 2007. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8: 172.   DOI
6 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
7 Schulte R, Kerneis S, Klinke S, Bartels H, Preger S, Kraehenbuhl JP, et al. 2000. Translocation of Yersinia enterocolitica across reconstituted intestinal epithelial monolayers is triggered by Yersinia invasin binding to ${\beta}1$ integrins apically expressed on M-like cells. Cell. Microbiol. 2: 173-185.   DOI
8 Tauxe RV. 1997. Emerging foodborne diseases: an evolving public health challenge. Emerg. Infect. Dis. 3: 425.   DOI
9 Toma S, Lafleur L. 1974. Survey on the incidence of Yersinia enterocolitica infection in Canada. J. Appl. Microbiol. 28: 469-473.
10 Kay BA, Wachsmuth K, Gemski P, Feeley JC, Quan TJ, Brenner D. 1983. Virulence and phenotypic characterization of Yersinia enterocolitica isolated from humans in the United States. J. Clin. Microbiol. 17: 128-138.
11 Zadernowska A, Chajecka-Wierzchowska W, Laniewska-Trokenheim L. 2014. Yersinia enterocolitica: a dangerous, but often ignored, foodborne pathogen. Food Rev. Int. 30: 53-70.   DOI
12 Scott E. 2003. Food safety and foodborne disease in 21st century homes. Can. J. Infect. Dis. 14: 277.   DOI
13 Edward JB. 1997. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10: 257-276.
14 Tauxe RV. 2002. Emerging foodborne pathogens. Int. J. Food Microbiol. 78: 31-41.   DOI
15 Kanan T, Abdulla Z. 2009. Isolation of Yersinia spp. from cases of diarrhoea in Iraqi infants and children. East Mediterr. Health J. 15: 276-284.   DOI
16 Bucher M, Meyer C, Grotzbach B, Wacheck S, Stolle A, Fredriksson-Ahomaa M. 2008. Epidemiological data on pathogenic Yersinia enterocolitica in Southern Germany during 2000-2006. Foodborne Pathog. Dis. 5: 273-280.   DOI
17 Boqvist S, Pettersson H, Svensson Å, Andersson Y. 2009. Sources of sporadic Yersinia enterocolitica infection in children in Sweden, 2004: a case-control study. Epidemiol. Infect. 137: 897-905.   DOI
18 Butler T, Islam M, Islam M, Azad A, Huq M, Speelman P, Roy S. 1984. Isolation of Yersinia enterocolitica and Y. intermedia from fatal cases of diarrhoeal illness in Bangladesh. Trans. R. Soc. Trop. Med. Hyg. 78: 449-450.   DOI
19 Soltan-Dallal M, Moezardalan K. 2003. Frequency of Yersinia species infection in paediatric acute diarrhoea in Tehran. East Mediterr. Health J. 10: 152-158.
20 Okwori AE, Martinez PO, Fredriksson-Ahomaa M, Agina SE, Korkeala H. 2009. Pathogenic Yersinia enterocolitica 2/O:9 and Yersinia pseudotuberculosis 1/O:1 strains isolated from human and non-human sources in the Plateau State of Nigeria. Food Microbiol. 26: 872-875.   DOI
21 Wauters G, Aleksic S, Charlier J, Schulze G. 1991. Somatic and flagellar antigens of Yersinia enterocolitica and related species. Contrib. Microbiol. Immunol. 12: 239.
22 Bottone EJ. 1999. Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect. 1: 323-333.   DOI
23 Brubaker RR. 1991. Factors promoting acute and chronic diseases caused by yersiniae. Clin. Microbiol. Rev. 4: 309-324.   DOI
24 Miller V, Farmer J, Hill W, Falkow S. 1989. The ail locus is found uniquely in Yersinia enterocolitica serotypes commonly associated with disease. Infect. Immun. 57: 121-131.
25 Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, et al. 1998. The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 62: 1315-1352.
26 Bottone EJ. 1997. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10: 257-276.
27 Miller V, Falkow S. 1988. Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect. Immun. 56: 1242-1248.
28 Cornelis G, Laroche Y, Balligand G, Sory M-P, Wauters G. 1987. Yersinia enterocolitica, a primary model for bacterial invasiveness. Rev. Infect. Dis. 9: 64-87.   DOI
29 Cornelis GR. 2006. The type III secretion injectisome. Nat. Rev. Microbiol. 4: 811-825.   DOI
30 Galan JE, Collmer A. 1999. Type III secretion m achines: bacterial devices for protein delivery into host cells. Science 284: 1322-1328.   DOI
31 Singh I, Virdi JS. 2005. Interaction of Yersinia enterocolitica biotype 1A strains of diverse origin with cultured cells in vitro. Jpn. J. Infect. Dis. 58: 31-33.
32 Galindo CL, Rosenzweig JA, Kirtley ML, Chopra AK. 2011. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in human yersiniosis. J. Pathog. 2011: 1-16.
33 Heise T, Dersch P. 2006. Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrixspecific cell adhesion and uptake. Proc. Natl. Acad. Sci. USA 103: 3375-3380.   DOI
34 Kirjavainen V, Jarva H, Biedzka-Sarek M, Blom AM, Skurnik M, Meri S. 2008. Yersinia enterocolitica serum resistance proteins YadA and Ail bind the complement regulator C4b-binding protein. PLoS Pathog. 4: e1000140.   DOI
35 Brodsky IE, Medzhitov R. 2008. Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. PLoS Pathog. 4: e1000067.   DOI
36 Home SM, Pruss BM. 2006. Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes. Arch. Microbiol. 185: 115-126.   DOI
37 Travers KJ, Chin C-S, Rank DR, Eid JS, Turner SW. 2010. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. 38: e159.   DOI
38 Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569.   DOI
39 Jin Q, Thilmony R, Zwiesler-Vollick J, He S-Y. 2003. Type III protein secretion in Pseudomonas syringae. Microbes Infect. 5: 301-310.   DOI
40 Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA. 2012. Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13: 375.   DOI
41 Delcher AL, Salzberg SL, Phillippy AM. 2003. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinformatics 10: Unit 10.3.
42 Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12: 444.   DOI
43 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
44 Disz T, Akhter S, Cuevas D, Olson R, Overbeek R, Vonstein V, et al. 2010. Accessing the SEED genome databases via web services API: tools for programmers. BMC Bioinformatics 11: 319.   DOI
45 Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.   DOI
46 Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. 2009. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25: 119-120.   DOI
47 Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81-91.   DOI
48 Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.   DOI
49 Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, et al. 2006. Score-based prediction of genomic islands in prokaryotic genomes using Hidden Markov models. BMC Bioinformatics 7: 142.   DOI
50 Bissett ML, Powers C, Abbott SL, Janda JM. 1990. Epidemiologic investigations of Yersinia enterocolitica and related species: sources, frequency, and serogroup distribution. J. Clin. Microbiol. 5: 910-912
51 Carlin A, Shi W, Dey S, Rosen BP. 1995. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J. Bacteriol. 177: 981-986.   DOI
52 Sedgwick AK, Tilton RC. 1971. Biochemical and serological characteristics of a Yersinia enterocolitica isolate. Appl. Microbiol. 21: 383-384.
53 Kanazawa Y, Kuramata T. 1976. Drug sensitivity of Yersinia enterocolitica and Yersinia pseudotuberculosis. Jpn. J. Antibiot. 29: 366-376.   DOI
54 Yao P, Chen X, Yan Y, Liu F, Zhang Y, Guo X, Xu B. 2014. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free Radic. Biol. Med. 68: 335-346.   DOI
55 Cornelis G, Sluiters C, De Rouvroit CL, Michiels T. 1989. Homology between VirF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J. Bacteriol. 171: 254-262.   DOI
56 Fuchs TM, Bresolin G, Marcinowski L, Schachtner J, Scherer S. 2008. Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiol. 8: 214.   DOI
57 Venecia K, Young GM. 2005. Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Infect. Immun. 73: 5961-5977.   DOI
58 Pepe JC, Miller VL. 1993. Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc. Natl. Acad. Sci. USA 90: 6473-6477.   DOI