• Title/Summary/Keyword: virulence differentiation

Search Result 24, Processing Time 0.03 seconds

Augmented Osteoclastogenesis from Committed Osteoclast Precursors by Periodontopathic Bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis (치주염 유발 세균 Aggregatibacter actinomycetemcomitans와 Porphyromonas gingivalis에 의한 committed osteoclast precursor 분화 증가)

  • Park, Ok-Jin;Kwon, Yeongkag;Yun, Cheol-Heui;Han, Seung Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.557-562
    • /
    • 2016
  • Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis are gram-negative bacteria frequently found in lesions from patients with periodontitis manifesting alveolar bone loss. Lipopolysaccharides are a major virulence factor of gram-negative bacteria. Bone resorption is known to be regulated by bacteria and their virulence factors. In the present study, we investigated the effects of A. actinomycetemcomitans and P. gingivalis on bone resorption. Heat-killed A. actinomycetemcomitans (HKAa) and heatkilled P. gingivalis (HKPg) induced bone loss in the femurs of mice after intraperitoneal administration. HKAa and HKPg augmented the differentiation of committed osteoclast precursors into osteoclasts, while they inhibited the differentiation of bone marrow-derived macrophages into osteoclasts. Concordant with the effects of the heat-killed whole cells, LPS purified from A. actinomycetemcomitans and P. gingivalis also augmented osteoclast differentiation from committed osteoclast precursors but attenuated it from bone marrow-derived macrophages. Taken together, these results suggest that the whole cells and lipopolysaccharides of A. actinomycetemcomitans and P. gingivalis induce the differentiation of committed osteoclast precursors into osteoclasts, potentially contributing to bone resorption in vivo.

Swarming Differentiation of Vibrio vulnificus Downregulates the Expression of the vvhBA Hemolysin Gene via the LuxS Quorum-Sensing System

  • Kim Moon-Young;Park Ra-Young;Choi Mi-Hwa;Sun Hui-Yu;Kim Choon-Mee;Kim Soo-Young;Rhee Joon-Haeng;Shin Sung-Heui
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.226-232
    • /
    • 2006
  • Swarming has proven to be a good in vitro model for bacterial surface adherence and colonization, and the swarming differentiation of a bacterium has been shown to be coupled with changes in the expression of virulence factors associated with its invasiveness, particularly in the early stages of infection. In this study, we attempted to determine whether the expression of vvhA, which encodes for hemolysin/cytolysin (VvhA), is either upregulated or downregulated during the swarming differentiation of V. vulnificus. The insertional inactivation of vvhA itself exerted no detectable effect on the expression of V. vulnificus swarming motility. However, in our lacZ-fused vvhA transcriptional reporter assay, vvhA expression decreased in swarming V. vulnificus as compared to non-swarming or planktonic V. vulnificus. The reduced expression of vvhA in swarming V. vulnificus increased as a result of the deletional inactivation of luxS, a gene associated with quorum sensing. These results show that vvhA expression in swarming V. vulnificus is downregulated via the activity of the LuxS quorum-sensing system, suggesting that VvhA performs no essential role in the invasiveness of V. vulnificus via the adherence to and colonization on the body surfaces required in the early stages of the infection. However, VvhA may playa significant role in the pathophysiological deterioration occurring after swarming V. vulnificus is differentiated into planktonic V. vulnificus.

Occurrence of Fusarium Wilt on Cruciferous Vegetable Crops and Pathogenic Differentiation of the Causal Fungus (십자화과 채소작물에서의 후사리움 시들음병 발생과 그 원인균의 병원성 분화)

  • 문윤기;김완규;조원대;성재모
    • Research in Plant Disease
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2001
  • Occurrence of Fusarium wilt was surveyed in fields of cruciferous vegetable crops in Korea from 1996 to 1998. The disease severely occurred up to 40% in fields of Chinese cabbage and radish but slightly in Fields of cabbage. A total of 123 isolates was obtained from roots of the diseased plants and identified as Fusarium oxysporum based on the morphological and cultural characteristics. Pathogenicity of nine isolates selected from the isolates was tested by artificial inoculation to the hosts. All the isolates had similar virulence on Chinese cabbage and cabbage, although there were some differences in virulence on cultivars tested among the isolates. The isolates from radish were more virulent to radish than those from Chinese cabbage and cabbage. All isolates from the crucifers were not virulent to eight species of vegetable crops except the crucifers. The results of pathogenicity tests showed that the pathotype of Chinese cabbage-infecting isolates was identical to that of cabbage-infecting isolates, but somewhat different from that of radish-infecting isolates.

  • PDF

Antimicrobial drug susceptibility and plasmid profiles of Salmonella species isolated from poultry (가금에서 분리한 Salmonella속 균의 항균물질에 대한 감수성 및 plasmid profile)

  • Kim, Won-yong;Chang, Young-hyo;Park, Kyoung-yoon;Kim, Chul-joong;Shin, Kwang-soon;Park, Yong-ha
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.3
    • /
    • pp.537-542
    • /
    • 1995
  • In this study, we aim to find the presence of virulence-related plasmid in Salmonella isolates from poultry, and the difference between S pullorum and S gallinarum on the plasmid profile and antibiotics resistance. We used seventeen isolates of Salmonella spp that were isolated from poultry. Thirteen isolates, S typhimurium(ST), S pullorum(SP) and S gallinarum(SG), contained virulence-related plasmids. These are 95Kd plasmid in ST and 85Kd plasmid in SP and SG. Three(1/4 of ST, 1/1 of SE, and 1/9 of SP) isolates have no detectable plasmids. The isolates of ST have relatively variable plasmid profile but the isolates of S pullorum except No 12(additional 3.0Kb plasmid) have common 85K6, 8.1Kb, 4.0Kb and 2.3Kb plasmid and two of three isolates of S gallinarum have common 85Kb, 4.0Kb and 2.3Kb plasmid but the rest has only 85Kb plasmid. Interestingly, all of the isolates of SP have 8.1Kb plasmid, and same size of plasmid is also found in one of ST isolates. All of the isolates have the resistance to penicillin, chloramphenicol, rifampicin, streptomycin, sulfamethazine and some isolates show the resistance to ampicillin and tetracycline. There is no relatedness between plasmid profile and antibiotics resistance and no differences between SP and SG in antibiotics resistance. Therefore further differentiation of each isolates by restriction enzyme assay and, if possible, charaterization of each plasmid, especially, 8.1Kb plasmid in SP and ST, may be necessary.

  • PDF

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Genetic Control of Asexual Sporulation in Fusarium graminearum

  • Son, Hokyoung;Kim, Myung-Gu;Chae, Suhn-Kee;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.15-15
    • /
    • 2014
  • Fusarium graminearum (teleomorph Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops such as wheat, barley, and rice, as well as causing ear and stalk rot on maize worldwide. Plant diseases caused by this fungus lead to severe yield losses and accumulation of harmful mycotoxins in infected cereals [1]. Fungi utilize spore production as a mean to rapidly avoid unfavorable environmental conditions and to amplify their population. Spores are produced sexually and asexually and their production is precisely controlled. Upstream developmental activators consist of fluffy genes have been known to orchestrate early induction of condiogenesis in a model filamentous fungus Aspergillus nidulans. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we characterized functions of the F. graminearum fluffy gene homologs [2]. We found that FlbD is conserved regulatory function for conidiogenesis in both A. nidulans and F. graminearum among five fluffy gene homologs. flbD deletion abolished conidia and perithecia production, suggesting that FlbD have global roles in hyphal differentiation processes in F. graminearum. We further identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum [3]. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. F. graminearum ortholog of Aspergillus nidulans wetA has been shown to be involved in conidiogenesis and conidium maturation [4]. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidia dormancy by suppressing microcycle conidiation in F. graminearum. In A. nidulans, FlbB physically interacts with FlbD and FlbE, and the resulting FlbB/FlbE and FlbB/FlbD complexes induce the expression of flbD and brlA, respectively. BrlA is an activator of the AbaA-WetA pathway. AbaA and WetA are required for phialide formation and conidia maturation, respectively [5]. In F. graminearum, the AbaA-WetA pathway is similar to that of A. nidulans, except a brlA ortholog does not exist. Amongst the fluffy genes, only fgflbD has a conserved role for regulation of the AbaA-WetA pathway.

  • PDF

The Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.161-170
    • /
    • 2009
  • Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including the HOG (high osmolarity glycerol response), PKC/Mpk1 MAPK (mitogen-activated protein kinase), calcium-dependent calcineurin, and RAS signaling pathways. The HOG pathway in C. neoformans not only controls responses to diverse environmental stresses, including osmotic shock, UV irradiation, oxidative stress, heavy metal stress, antifungal drugs, toxic metabolites, and high temperature, but also regulates ergosterol biosynthesis. The PKC(protein kinase C)/Mpk1 pathway in C. neoformans is involved in a variety of stress responses, including osmotic, oxidative, and nitrosative stresses and breaches of cell wall integrity. The $Ca^{2+}$/calmodulin- and Ras-signaling pathways also play critical roles in adaptation to certain environmental stresses, such as high temperature and sexual differentiation. Perturbation of the SAS pathways not only impairs the ability of C. neoformans to resist a variety of environmental stresses during host infection, but also affects production of virulence factors, such as capsule and melanin. A drug(s) capable of targeting signaling components of the SAS pathway will be effective for treatment of cryptococcosis.

Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus

  • Kim, Subin;Yeon, Jungyoon;Sung, Jongmin;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.831-840
    • /
    • 2020
  • The β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the β-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible "open" conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.

Delineating Transcription Factor Networks Governing Virulence of a Global Human Meningitis Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo;Yang, Dong-Hoon;Maeng, Shinae;Lee, Kyung-Tae;So, Yee-Seul;Hong, Joohyeon;Choi, Jaeyoung;Byun, Hyo-Jeong;Kim, Hyelim;Bang, Soohyun;Song, Min-Hee;Lee, Jang-Won;Kim, Min Su;Kim, Seo-Young;Ji, Je-Hyun;Park, Goun;Kwon, Hyojeong;Cha, Sooyeon;Meyers, Gena Lee;Wang, Li Li;Jang, Jooyoung;Janbon, Guilhem;Adedoyin, Gloria;Kim, Taeyup;Averette, Anna K.;Heitman, Joseph;Cheong, Eunji;Lee, Yong-Hwan;Lee, Yin-Won;Bahn, Yong-Sun
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.59-59
    • /
    • 2015
  • Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but the treatment of cryptococcosis remains challenging. To develop novel therapeutic targets and approaches, signaling cascades controlling pathogenicity of C. neoformans have been extensively studied but the underlying biological regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs) in this basidiomycetous fungus. In this study, we constructed a high-quality of 322 signature-tagged gene deletion strains for 155 putative TF genes, which were previously predicted using the DNA-binding domain TF database (http://www.transcriptionfactor.org/). We tested in vivo and in vitro phenotypic traits under 32 distinct growth conditions using 322 TF gene deletion strains. At least one phenotypic trait was exhibited by 145 out of 155 TF mutants (93%) and approximately 85% of the TFs (132/155) have been functionally characterized for the first time in this study. Through high-coverage phenome analysis, we discovered myriad novel TFs that play critical roles in growth, differentiation, virulence-factor (melanin, capsule, and urease) formation, stress responses, antifungal drug resistance, and virulence. Large-scale virulence and infectivity assays in insect (Galleria mellonella) and mouse host models identified 34 novel TFs that are critical for pathogenicity. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and ubiquitous human fungal pathogens.

  • PDF

Sequence Analysis of E2 Glycoprotein from Indian Isolate of Classical Swine Fever Virus (CSFV)

  • Bajwa, Mehak;Verma, Ramneek;Deka, Dipak;Dhol, Gagandeep Singh;Barman, Nagendra Nath
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • CSF is a major concern for the swine industry, representing currently the most epizootically dangerous disease to the species. Numerous CSFV isolates with various degrees of virulence have already been isolated worldwide, ranging from low virulent strains that do not result in any apparent clinical signs to highly virulent strains that cause a severe per acute hemorrhagic fever with very high mortality. The molecular epidemiology of CSFVs has proven to be an essential tool for effective disease control and the development of safe and effective vaccines. Therefore, this study cloned and sequenced local CSFV isolates, and conducted a phylogenetic analysis based on the E2 glycoprotein encoding sequences.The RNA was extracted from PK15 cell culture passaged CSFV isolates, the cDNA prepared, and the complete E2 gene amplified with a product size of 1186 bp. The gelpurified PCR product was cloned into a pGEMT easy vector and the positive clone commercially sequenced. Aligning the nucleotide (1119 bp) and amino acid (373) sequences with 29 reference strains revealed nucleotide and amino acid sequence identities of 82.60-97.80% and 88.70-98.70%, respectively, indicating a higher mutation rate of the field CSFV strains. The phylogenetic analysis based on the complete E2 amino acid sequences also revealed a reliable differentiation of all the analyzed strains into specific genetic groups and subgroups, plus the local isolate (CSFV-E2) was found to cluster with the CSFV subgroup 2.2. Thus, the full-length E2 cds proved to be most suitable for a reliable and statistically significant phylogenetic analysis of CSFV isolates.