S7-1

Delineating Transcription Factor Networks Governing Virulence of a Global Human Meningitis Fungal Pathogen, *Cryptococcus neoformans*

Kwang-Woo Jung^{1,6}, Dong-Hoon Yang^{1,1}, Shinae Maeng¹, Kyung-Tae Lee¹, Yee-Seul So¹, Joohyeon Hong², Jaeyoung Choi³, Hyo-Jeong Byun¹, Hyelim Kim¹, Soohyun Bang¹, Min-Hee Song¹, Jang-Won Lee¹, Min Su Kim¹, Seo-Young Kim¹, Je-Hyun Ji¹, Goun Park¹, Hyojeong Kwon¹, Sooyeon Cha¹, Gena Lee Meyers¹, Li Li Wang¹, Jooyoung Jang¹, Guilhem Janbon⁴, Gloria Adedoyin⁵, Taeyup Kim⁵, Anna K. Averette⁵, Joseph Heitman⁵, Eunji Cheong², Yong-Hwan Lee³, Yin-Won Lee³ and Yong-Sun Bahn^{1,*}

¹Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea, ²Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea, ³Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea, ⁴Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, F-75015, Paris, France, ⁵Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA, ⁶Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea; *Email: ysbahn@yonsei.ac.kr

Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but the treatment of cryptococcosis remains challenging. To develop novel therapeutic targets and approaches, signaling cascades controlling pathogenicity of C. neoformans have been extensively studied but the underlying biological regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs) in this basidiomycetous fungus. In this study, we constructed a high-quality of 322 signature-tagged gene deletion strains for 155 putative TF genes, which were previously predicted using the DNA-binding domain TF database (http://www.transcriptionfactor.org/). We tested in vivo and in vitro phenotypic traits under 32 distinct growth conditions using 322 TF gene deletion strains. At least one phenotypic trait was exhibited by 145 out of 155 TF mutants (93%) and approximately 85% of the TFs (132/155) have been functionally characterized for the first time in this study. Through high-coverage phenome analysis, we discovered myriad novel TFs that play critical roles in growth, differentiation, virulence-factor (melanin, capsule, and urease) formation, stress responses, antifungal drug resistance, and virulence. Large-scale virulence and infectivity assays in insect (Galleria mellonella) and mouse host models identified 34 novel TFs that are critical for pathogenicity. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and ubiquitous human fungal pathogens.