Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0168

Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus  

Kim, Subin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Yeon, Jungyoon (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Sung, Jongmin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Jin, Mi Sun (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Abstract
The β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the β-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible "open" conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.
Keywords
${\beta}$-class carbonic anhydrase; Aspergillus fumigatus; CafA; X-ray crystallography; zinc metalloenzyme;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cronk, J.D., Rowlett, R.S., Zhang, K.Y., Tu, C., Endrizzi, J.A., Lee, J., Gareiss, P.C., and Preiss, J.R. (2006). Identification of a novel noncatalytic bicarbonate binding site in eubacterial beta-carbonic anhydrase. Biochemistry 45, 4351-4361.   DOI
2 Del Prete, S., Vullo, D., Fisher, G.M., Andrews, K.T., Poulsen, S.A., Capasso, C., and Supuran, C.T. (2014a). Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the etacarbonic anhydrases. Bioorg. Med. Chem. Lett. 24, 4389-4396.   DOI
3 Del Prete, S., Vullo, D., Scozzafava, A., Capasso, C., and Supuran, C.T. (2014b). Cloning, characterization and anion inhibition study of the deltaclass carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii. Bioorg. Med. Chem. 22, 531-537.   DOI
4 Dollery, C.T. (1991). Therapeutic Drugs (Edinburgh; London: Churchill Livingstone).
5 Dostál, J., Brynda, J., Blaha, J., Machacek, S., Heidingsfeld, O., and Pichová, I. (2018). Crystal structure of carbonic anhydrase CaNce103p from the pathogenic yeast Candida albicans. BMC Struct. Biol. 18, 14.   DOI
6 Elleuche, S. and Pöggeler, S. (2009). Evolution of carbonic anhydrases in fungi. Curr. Genet. 55, 211-222.   DOI
7 Elleuche, S. and Pöggeler, S. (2010). Carbonic anhydrases in fungi. Microbiology 156, 23-29.   DOI
8 West, D., Kim, C.U., Tu, C., Robbins, A.H., Gruner, S.M., Silverman, D.N., and McKenna, R. (2012). Structural and kinetic effects on changes in the CO(2) binding pocket of human carbonic anhydrase II. Biochemistry 51, 9156-9163.   DOI
9 Whittington, D.A., Waheed, A., Ulmasov, B., Shah, G.N., Grubb, J.H., Sly, W.S., and Christianson, D.W. (2001). Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc. Natl. Acad. Sci. U. S. A. 98, 9545-9550.   DOI
10 Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., and Morel, F.M. (2008). Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452, 56-61.   DOI
11 Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255.   DOI
12 Nair, S.K., Krebs, J.F., Christianson, D.W., and Fierke, C.A. (1995). Structural basis of inhibitor affinity to variants of human carbonic anhydrase II. Biochemistry 34, 3981-3989.   DOI
13 Neish, A.C. (1939). Studies on chloroplasts: their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem. J. 33, 300-308.   DOI
14 Neri, D. and Supuran, C.T. (2011). Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 10, 767- 777.   DOI
15 Wilbur, K.M. and Anderson, N.G. (1948). Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147-154.   DOI
16 Otwinowski, Z. and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.   DOI
17 Pilka, E.S., Kochan, G., Oppermann, U., and Yue, W.W. (2012). Crystal structure of the secretory isozyme of mammalian carbonic anhydrases CA VI: implications for biological assembly and inhibitor development. Biochem. Biophys. Res. Commun. 419, 485-489.   DOI
18 Ren, P., Chaturvedi, V., and Chaturvedi, S. (2014). Carbon dioxide is a powerful inducer of monokaryotic hyphae and spore development in Cryptococcus gattii and carbonic anhydrase activity is dispensable in this dimorphic transition. PLoS One 9, e113147.   DOI
19 Russo, M.E., Scialla, S., De Luca, V., Capasso, C., Olivieri, G., and Marzocchella, A. (2013). Immobilization of carbonic anhydrase for biomimetic CO2 capture. Chem. Eng. Trans. 32, 1867-1872.
20 Schlicker, C., Hall, R.A., Vullo, D., Middelhaufe, S., Gertz, M., Supuran, C.T., Mühlschlegel, F.A., and Steegborn, C. (2009). Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. J. Mol. Biol. 385, 1207-1220.   DOI
21 Silverman, D.N. and Lindskog, S. (1988). The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc. Chem. Res. 21, 30-36.   DOI
22 Smith, K.S. and Ferry, J.G. (1999). A plant-type (beta-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. J. Bacteriol. 181, 6247-6253.   DOI
23 Lehneck, R., Neumann, P., Vullo, D., Elleuche, S., Supuran, C.T., Ficner, R., and Pöggeler, S. (2014). Crystal structures of two tetrameric beta-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora. FEBS J. 281, 1759-1772.   DOI
24 Kim, S., Sung, J., Yeon, J., Choi, S.H., and Jin, M.S. (2019b). Crystal structure of a highly thermostable alpha-carbonic anhydrase from Persephonella marina EX-H1. Mol. Cells 42, 460-469.   DOI
25 Kimber, M.S. and Pai, E.F. (2000). The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alphacarbonic anhydrases. EMBO J. 19, 1407-1418.   DOI
26 Klengel, T., Liang, W.J., Chaloupka, J., Ruoff, C., Schröppel, K., Naglik, J.R., Eckert, S.E., Mogensen, E.G., Haynes, K., Tuite, M.F., et al. (2005). Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr. Biol. 15, 2021-2026.   DOI
27 Luca, V.D., Vullo, D., Scozzafava, A., Carginale, V., Rossi, M., Supuran, C.T., and Capasso, C. (2013). An ${\alpha}-carbonic$ anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorg Med. Chem. 21, 1465-1469.   DOI
28 Maupin, C.M. and Voth, G.A. (2007). Preferred orientations of His64 in human carbonic anhydrase II. Biochemistry 46, 2938-2947.   DOI
29 McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674.   DOI
30 Meldrum, N.U. and Roughton, F.J. (1933). Carbonic anhydrase. Its preparation and properties. J. Physiol. 80, 113-142.   DOI
31 Jo, B.H., Seo, J.H., and Cha, H.J. (2014). Bacterial $extremo-{\alpha}- carbonic$ anhydrases from deep-sea hydrothermal vents as potential biocatalysts for CO2 sequestration. J. Mol. Catal. B Enzym. 109, 31-39.   DOI
32 Han, K.H., Chun, Y.H., Figueiredo Bde, C., Soriani, F.M., Savoldi, M., Almeida, A., Rodrigues, F., Cairns, C.T., Bignell, E., Tobal, J.M., et al. (2010). The conserved and divergent roles of carbonic anhydrases in the filamentous fungi Aspergillus fumigatus and Aspergillus nidulans. Mol. Microbiol. 75, 1372-1388.   DOI
33 Smith, K.S., Jakubzick, C., Whittam, T.S., and Ferry, J.G. (1999). Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc. Natl. Acad. Sci. U. S. A. 96, 15184-15189.   DOI
34 Strop, P., Smith, K.S., Iverson, T.M., Ferry, J.G., and Rees, D.C. (2001). Crystal structure of the "cab"-type beta class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum. J. Biol. Chem. 276, 10299-10305.   DOI
35 Supuran, C.T. (2008). Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 7, 168-181.   DOI
36 Supuran, C.T. (2016). Structure and function of carbonic anhydrases. Biochem. J. 473, 2023-2032.   DOI
37 Kanth, B.K., Jun, S.Y., Kumari, S., and Pack, S.P. (2014). Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: its expression and characterization for CO2-sequestration applications. Process Biochem. 49, 2114-2121.   DOI
38 Kikutani, S., Nakajima, K., Nagasato, C., Tsuji, Y., Miyatake, A., and Matsuda, Y. (2016). Thylakoid luminal theta-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. U. S. A. 113, 9828-9833.   DOI
39 Kim, S., Kim, N.J., Hong, S., Kim, S., Sung, J., and Jin, M.S. (2019a). The structural basis of the low catalytic activities of the two minor betacarbonic anhydrases of the filamentous fungus Aspergillus fumigatus. J. Struct. Biol. 208, 61-68.   DOI
40 Mitsuhashi, S., Mizushima, T., Yamashita, E., Yamamoto, M., Kumasaka, T., Moriyama, H., Ueki, T., Miyachi, S., and Tsukihara, T. (2000). X-ray structure of beta-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO(2) hydration. J. Biol. Chem. 275, 5521-5526.   DOI
41 Emsley, P. and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132.   DOI
42 Eriksson, A.E., Jones, T.A., and Liljas, A. (1988). Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins 4, 274-282.   DOI
43 Fisher, S.Z., Maupin, C.M., Budayova-Spano, M., Govindasamy, L., Tu, C., Agbandje-McKenna, M., Silverman, D.N., Voth, G.A., and McKenna, R. (2007). Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism. Biochemistry 46, 2930-2937.   DOI
44 Fukasawa, Y., Tsuji, J., Fu, S.C., Tomii, K., Horton, P., and Imai, K. (2015). MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics 14, 1113-1126.   DOI
45 Götz, R., Gnann, A., and Zimmermann, F.K. (1999). Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast 15, 855-864.   DOI
46 Isik, S., Kockar, F., Arslan, O., Guler, O.O., Innocenti, A., and Supuran, C.T. (2008). Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the yeast Saccharomyces cerevisiae with anions. Bioorg. Med. Chem. Lett. 18, 6327-6331.   DOI
47 Huang, S., Hainzl, T., Grundström, C., Forsman, C., Samuelsson, G., and Sauer-Eriksson, A.E. (2011). Structural studies of beta-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide. PLoS One 6, e28458.   DOI
48 Innocenti, A., Leewattanapasuk, W., Mühlschlegel, F.A., Mastrolorenzo, A., and Supuran, C.T. (2009). Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the pathogenic yeast Candida glabrata with anions. Bioorg. Med. Chem. Lett. 19, 4802-4805.   DOI
49 Innocenti, A., Mühlschlegel, F.A., Hall, R.A., Steegborn, C., Scozzafava, A., and Supuran, C.T. (2008). Carbonic anhydrase inhibitors: inhibition of the beta-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions. Bioorg. Med. Chem. Lett. 18, 5066-5070.   DOI
50 Iverson, T.M., Alber, B.E., Kisker, C., Ferry, J.G., and Rees, D.C. (2000). A closer look at the active site of gamma-class carbonic anhydrases: highresolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39, 9222-9231.   DOI
51 James, P., Isupov, M.N., Sayer, C., Saneei, V., Berg, S., Lioliou, M., Kotlar, H.K., and Littlechild, J.A. (2014). The structure of a tetrameric alpha-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability. Acta Crystallogr. D Biol. Crystallogr. 70, 2607-2618.   DOI
52 Alterio, V., Hilvo, M., Di Fiore, A., Supuran, C.T., Pan, P., Parkkila, S., Scaloni, A., Pastorek, J., Pastorekova, S., Pedone, C., et al. (2009). Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc. Natl. Acad. Sci. U. S. A. 106, 16233-16238.   DOI
53 Amich, J., Vicentefranqueira, R., Leal, F., and Calera, J.A. (2010). Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes. Eukaryot. Cell 9, 424-437.   DOI
54 Bahn, Y.S., Cox, G.M., Perfect, J.R., and Heitman, J. (2005). Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr. Biol. 15, 2013-2020.   DOI
55 Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221.   DOI
56 Capasso, C., De Luca, V., Carginale, V., Cannio, R., and Rossi, M. (2012a). Biochemical properties of a novel and highly thermostable bacterial alpha-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1. J. Enzyme Inhib. Med. Chem. 27, 892-897.   DOI
57 Carter, J.M., Havard, D.J., and Parsons, D.S. (1969). Electrometric assay of rate of hydration of CO2 for investigation of kinetics of carbonic anhydrase. J. Physiol. 204, 60P-62P.
58 Capasso, C., De Luca, V., Carginale, V., Caramuscio, P., Cavalheiro, C., Cannio, R., and Rossi, M. (2012b). Characterization and properties of a new thermoactive and thermostable carbonic anhydrase. Chem. Eng. Trans. 27, 271-276.