• Title/Summary/Keyword: virtual scanning

Search Result 119, Processing Time 0.025 seconds

Application of Three-dimensional Scanning, Haptic Modeling, and Printing Technologies for Restoring Damaged Artifacts

  • Jo, Young Hoon;Hong, Seonghyuk
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.71-80
    • /
    • 2019
  • This study examined the applicability of digital technologies based on three-dimensional(3D) scanning, modeling, and printing to the restoration of damaged artifacts. First, 3D close-range scanning was utilized to make a high-resolution polygon mesh model of a roof-end tile with a missing part, and a 3D virtual restoration of the missing part was conducted using a haptic interface. Furthermore, the virtual restoration model was printed out with a 3D printer using the material extrusion method and a PLA filament. Then, the additive structure of the printed output with a scanning electron microscope was observed and its shape accuracy was analyzed through 3D deviation analysis. It was discovered that the 3D printing output of the missing part has high dimensional accuracy and layer thickness, thus fitting extremely well with the fracture surface of the original roof-end tile. The convergence of digital virtual restoration based on 3D scanning and 3D printing technology has helped in minimizing contact with the artifact and broadening the choice of restoration materials significantly. In the future, if the efficiency of the virtual restoration modeling process is improved and the material stability of the printed output for the purpose of restoration is sufficiently verified, the usability of 3D digital technologies in cultural heritage restoration will increase.

Three-dimensional analysis of the outcome of different scanning strategies in virtual interocclusal registration

  • Jiansong, Mei;Liya, Ma;Jiarui, Chao;Fei, Liu;Jiefei, Shen
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.369-378
    • /
    • 2022
  • PURPOSE. The purpose of this in vitro study was to assess whether scanning strategies of virtual interocclusal record (VIR) affect the accuracy of VIR during intraoral scanning. MATERIALS AND METHODS. Five pairs of reference cubes were added to the digital upper and lower dentitions of a volunteer, which were printed into resin casts. Subsequently, the resin casts were articulated in the maximal intercuspal position in a mechanical articulator and scanned with an industrial computed tomography system, of which the VIR was served as a reference VIR. The investigated VIR of the upper and lower jaws of the resin master cast were recorded with an intraoral scanner according to 9 designed scanning strategies. Then, the deviation between the investigated VIRs and reference VIR were analyzed, which were measured by the deviation of the distances of six selected reference points on the upper reference cubes in each digital cast to the XY-plane between the investigated VIRs and reference VIR. RESULTS. For the deviation in the right posterior dentitions, RP group (only scanning of right posterior dentitions) showed the smallest deviation. Besides, BP group (scanning of bilateral posterior dentitions) showed the smallest deviation in the left posterior dentitions. Moreover, LP group (scanning of left posterior dentitions) showed the smallest deviation in the anterior dentitions. For the deviation of full dental arches, BP group showed the smallest deviation. CONCLUSION. Different scanning strategies of VIR can influence the accuracy of alignment of virtual dental casts. Appropriate scanning strategies of VIR should be selected for different regions of interest and edentulous situations.

A Study of Applications of 3D Body Scanning Technology - Focused on Apparel Industry - (3차원 바디 스캐너를 활용한 가상착의에 관한 인식 조사 - 업체 실무자 및 소비자를 대상으로 -)

  • Paek, Kyung-Ja;Lee, Jeong-Ran;Kim, Mi-Sung
    • Korean Journal of Human Ecology
    • /
    • v.18 no.3
    • /
    • pp.719-727
    • /
    • 2009
  • The ultimate success of commercial applications of body scan data in the apparel industry will be consumers' substantial applications such as automated custom fit, size prediction, virtual try-on, personal shopper services (Loker, S. et al., 2004). In this study, we surveyed fifty consumers and forty-seven apparel industry workers about their recognition and interest in 3D body scanning and virtual try-on. The results are as follows: 55% of the apparel industry workers has recognized 3D body scanning as a convenient technology, but do not know how to use it. To the questions regarding virtual try-on, 53% of the workers give positive answers. The consumers have a more positive view on virtual try-on than the workers do. The workers predict that the application of 3D body scan technology to the apparel industry could offer customers helpful information in their clothing selection by using virtual images of various size and style, and increase mass production of MTM(Made-To-Measure). The answers from the male consumers in their twenties indicate that virtual try-on is useful by 88% on offline shopping and by 100% on online shopping. 53% of the workers and 68% of the consumers gave answers that just by virtual try-on they could judge the quality of the apparel products and purchase them. Absolutely 3D virtual try-on is an effective tool for online shoppers. 85% of the workers anticipate applications of the 3D body scanning also in 'body measurement', 'custom pattern development' as well as 'virtual try-on' in the near future. With the positive reactions and the stimulating interests in virtual try-on, the conditions of contemporary world encourage more active researches and wide usages of the technology in apparel industry.

A Study on i-Fashion 3D Avatar's Consumer satisfaction & Comparison of 3D and Direct Masurement - Based of Domestic University Students

  • Choi, Eunhee;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.421-428
    • /
    • 2015
  • This research is to understand customer satisfaction with virtual fitting based on a 3D body scanner and avatars as well as differences between avatars and the 'real me'. To this end, this research examined Korean college students to facilitate 3D body scanning, avatar generation and surveys. The author used 3D body scan data with direct measurements to identify differences between the 3D body scan data-based 'my avatar' and 'real me' in the virtual dress fitting system. The survey results on 'the level of customer awareness on 3D body scanner' found that the majority of both genders did not know about it and indicated a lower usability to incorporate IT technology into the fashion industry. The question in the 3D body scanning and avatar found an affirmative attitude. Satisfaction levels on the 3D avatars' similarity with 'own body' and garment fitting were positive and indicated a need for further technological improvements to express the avatars identical to customers' own body. More research is necessary for the accuracy of sizes for 3D body scanning that measure body sizes while wearing clothes. Avatars based on such datamay be less similar to 'own body' and cause customer dissatisfaction. Thus, further technology development is required to narrow gaps using data to make avatars that provide more accurate virtual fitting simulation services to customers.

A Study on the Dynamic Expression of Fabrics based on RGB-D Sensor and 3D Virtual Clothing CAD System (RGB-D 센서 및 3D Virtual Clothing CAD활용에 의한 패션소재의 동적표현 시스템에 대한 연구)

  • Lee, Jieun;Kim, Soulkey;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.1
    • /
    • pp.30-41
    • /
    • 2013
  • Augmented reality techniques have been increasingly employed in the textile and fashion industry as well as computer graphics sectors. Three-dimensional virtual clothing CAD systems have also been widely used in the textile industries and academic institutes. Motion tracking techniques are grafted together in the 3D and augmented reality techniques in order to develop the virtual three-dimensional clothing and fitting systems in the fashion and textile industry sectors. In this study, three-dimensional virtual clothing sample has been prepared using a 3D virtual clothing CAD along with a 3D scanning and reconstruction system. Motion of the user has been captured through an RGB-D sensor system, and the virtual clothing fitted on the user's body is allowed to move along with the captured motion flow of the user. Acutal fabric specimens are selected for the material characterization. This study is a primary step toward building a comprehensive system for the user to experience interactively virtual clothing under real environment.

Comparison of Virtual Avatars by Using Automatic and Manual Method

  • Lim, Ho-Sun;Istook, Cynthia L.
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.1968-1979
    • /
    • 2010
  • New technology that includes 3D body scanning, digital virtual human, and digital virtual garments has had a significant impact on the current apparel industry. Virtual simulation technology enables the visualization of a 3D virtual garment on a virtual avatar so that consumers can try on garments with their virtual avatars before purchasing. However, the manual virtual avatar provided for online apparel shopping currently has revealed limitations on the different body sizes and shapes of customers. This study analyzes the process of designing the automatic virtual avatar and the manual virtual avatar using OptiTex software; in addition, the study compares the practicality of the automatic virtual avatar with that of the manual virtual avatar. Data was examined by evaluating how much each virtual avatar is similar to the real body and how well it matched the needs of the current apparel industry. In the study, Avatar 1 was automatically created from three-dimensional body scan data and Avatar 2 was manually created from body measurements. The virtual avatar images laid over a real body image and the results were evaluated by comparing the simulated sizes of virtual avatars with those of a real body. Consequently, Avatar 1 was evaluated as more similar to the real body than Avatar 2 in all five body shapes. This study illustrates that an automatic virtual avatar might solve the fit problem that is the most common reason for a high return rate for online shopping. The results show that future virtual simulation technology needs to be improved for the practicality of the virtual avatars.

Research on the Application of Digital Human Production Based on Photoscan Realistic Head 3D Scanning and Unreal Engine MetaHuman Technology in the Metaverse

  • Pan, Yang;Kim, KiHong;Lee, JuneSok;Sang, YuanZi;Cheon, JiIn
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.102-118
    • /
    • 2022
  • With the development of digital content software production technology and the technological progress of related hardware, the social status quo in the post-epidemic era, the popularization and application of 5G networks, the market and consumers' increasing demand for digital content products, artificial intelligence, virtual digital human, virtual Idols, virtual live, self-media content and metaverse-related content industries are all developing rapidly. Virtual idols, virtual digital human, etc. are not only accelerating innovation in production technology. The economic cost, technical difficulty and time requirements of production are also greatly reduced. With the arrival and development of the Metaverse, the author believes that the content industry with virtual digital humans as the core will continue to develop in the direction of refinement, specialization, facilitation and customization. In this article, we will analyze and study the production of virtual digital human based on Photoscan technology and Unreal Engine 5 Metahuman software, and discuss the application status and future development of related content.

Integrating 3D facial scanning in a digital workflow to CAD/CAM design and fabricate complete dentures for immediate total mouth rehabilitation

  • Hassan, Bassam;Greven, Marcus;Wismeijer, Daniel
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.381-386
    • /
    • 2017
  • PURPOSE. To integrate extra-oral facial scanning information with CAD/CAM complete dentures to immediately rehabilitate terminal dentition. MATERIALS AND METHODS. Ten patients with terminal dentition scheduled for total extraction and immediate denture placement were recruited for this study. The patients were submitted to a facial scanning procedure using the in-office PritiMirror scanner with bite registration records in-situ. Definitive stone cast models and bite records were subsequently submitted to a lab scanning procedure using the lab scanner (iSeries DWOS; Dental Wings). The scanned models were used to create a virtual teeth setup of a complete denture. Using the intra-oral bite records as a reference, the virtual setup was incorporated in the facial scan thereby facilitating a virtual clinical evaluation (teeth try-in) phase. After applying necessary adjustments, the virtual setup was submitted to a CAM procedure where a 5-axis industrial milling machine (M7 CNC; Darton AG General) was used to fabricate a full-milled PMMA immediate provisional prosthesis. RESULTS. Total extractions were performed, the dentures were immediately inserted, and subjective clinical fit was evaluated. The immediate provisional prostheses were inserted and clinical fit, occlusion/articulation, and esthetics were subjectively assessed; the results were deemed satisfactory. All provisional prostheses remained three months in function with no notable technical complications. CONCLUSION. Ten patients with terminal dentition were treated using a complete digital approach to fabricate complete dentures using CAD/CAM technology. The proposed technique has the potential to accelerate the rehabilitation procedure starting from immediate denture to final implant-supported prosthesis leading to more predictable functional and aesthetics outcomes.

Determination of the Virtual Focus Position for Electron Beam with Air Scanning (전자선에서 Virtual Source Distance의 위치 결정)

  • Kwon Kyung Tea;Youn Wha Ryong;Park Kwang Ho;Kim Chung Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.6 no.1
    • /
    • pp.89-93
    • /
    • 1994
  • Authors have measured virtual source distance of electron beam from CL/1800 medical linear accelerator, with newly designed method. Beam scanning was performed with the direction of beam axis in the air. Compared results between this study and well established in phantom measurement shows good agreement with in experimental error. And we have found that build-up cap plays very important role in air measurement because of charge build up. The method of in-air measurement of virtual source distance is very easy to set-up and generate accurate results.

  • PDF