• Title/Summary/Keyword: virtual rotation

Search Result 122, Processing Time 0.028 seconds

Various Haptic Effects Based on Simultaneous Actuation of Motors and Brakes (모터와 브레이크의 동시구현에 기초한 다양한 햅틱효과의 제시)

  • Kwon Tae-Bum;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.602-608
    • /
    • 2005
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic devices. Motors can generate a torque in any direction, but they can make the system active during operation, thus leading to instability. Brakes can generate a torque only against their rotation, but they dissipate energy during operation, which makes the system intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. Among various haptic effects, contact with the virtual wall, representation of friction and representation of plastic deformation have been investigated extensively in this paper. It is shown that the hybrid haptic device is more suited to some applications than the motor-based haptic device.

Comparative Study on the Interface and Interaction for Manipulating 3D Virtual Objects in a Virtual Reality Environment (가상현실 환경에서 3D 가상객체 조작을 위한 인터페이스와 인터랙션 비교 연구)

  • Park, Kyeong-Beom;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.20-30
    • /
    • 2016
  • Recently immersive virtual reality (VR) becomes popular due to the advanced development of I/O interfaces and related SWs for effectively constructing VR environments. In particular, natural and intuitive manipulation of 3D virtual objects is still considered as one of the most important user interaction issues. This paper presents a comparative study on the manipulation and interaction of 3D virtual objects using different interfaces and interactions in three VR environments. The comparative study includes both quantitative and qualitative aspects. Three different experimental setups are 1) typical desktop-based VR using mouse and keyboard, 2) hand gesture-supported desktop VR using a Leap Motion sensor, and 3) immersive VR by wearing an HMD with hand gesture interaction using a Leap Motion sensor. In the desktop VR with hand gestures, the Leap Motion sensor is put on the desk. On the other hand, in the immersive VR, the sensor is mounted on the HMD so that the user can manipulate virtual objects in the front of the HMD. For the quantitative analysis, a task completion time and success rate were measured. Experimental tasks require complex 3D transformation such as simultaneous 3D translation and 3D rotation. For the qualitative analysis, various factors relating to user experience such as ease of use, natural interaction, and stressfulness were evaluated. The qualitative and quantitative analyses show that the immersive VR with the natural hand gesture provides more intuitive and natural interactions, supports fast and effective performance on task completion, but causes stressful condition.

Strain localization and failure load predictions of geosynthetic reinforced soil structures

  • Alsaleh, Mustafa;Kitsabunnarat, Akadet;Helwany, Sam
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.235-261
    • /
    • 2009
  • This study illustrates the differences between the elasto-plastic cap model and Lade's model with Cosserat rotation through the analyses of two large-scale geosynthetic-reinforced soil (GRS) retaining wall tests that were brought to failure using a monotonically increasing surcharge pressure. The finite element analyses with Lade's model were able to reasonably simulate the large-scale plane strain laboratory tests. On average, the finite element analyses gave reasonably good agreement with the experimental results in terms of global performances and shear band occurrences. In contrast, the cap model was not able to simulate the development of shear banding in the tests. In both test simulations the cap model predicted failure loads that were substantially less than the measured ones.

Development of a Plate Manufacturing CAD/CAM Program for a Optimal Layout and Distributed Control System

  • Kim, Hun-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1089-1103
    • /
    • 2000
  • A Problem of relevant interest to some industries is that of obtaining optimum two-dimensional layout. To solve this provlem, one is given a number of rectangular sheets and an order for a specified number of each of certain types of two-dimensional regular and irregular shapes. The aim is to cut the the shapes out of the sheets in such a way as to minimize the amount of waste produced. A DCS (Distributed Control System) is an integrated system which applies the decentralization concept to a control system handling both sequential and analog control. A DCS performs many operations such as data gathering, data processing, data storing and monitoring the operatin conditions for the operator. IN this paper, we propose a genetic algorithm based on rotation parameters from which the best pattern of layout is found as well as a layout method for better performance time. A DCS for the plate cutting process system, which is performed by a virtual system, is also identified.

  • PDF

Effect on Audio Play Latency for Real-Time HMD-Based Headphone Listening (HMD를 이용한 오디오 재생 기술에서 Latency의 영향 분석)

  • Son, Sangmo;Jo, Hyun;Kim, Sunmin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.141-145
    • /
    • 2014
  • A minimally appropriate time delay of audio data processing is investigated for rendering virtual sound source direction in real-time head-tracking environment under headphone listening. Less than 3.7 degree of angular mismatch should be maintained in order to keep desired sound source directions in virtually fixed while listeners are rotating their head in a horizontal plane. The angular mismatch is proportional to speed of head rotation and data processing delay. For 20 degree/s head rotation, which is a relatively slow head-movement case, less than total of 63ms data processing delay should be considered.

  • PDF

Euler Parameters Method for Large Deformation Analysis of Marine Slender Structures (오일러 매개변수를 이용한 해양 세장체 대변위 거동 해석)

  • Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.163-167
    • /
    • 2003
  • A novel method for 3-dimensional dynamic analysis of marine slender structure gas been developed by using Euler parameters. The Euler parameter rotation, which is being widely used in aerospace vehicle dynamics and multi-body dynamics, has been applied to elastic structure analysis. Large deformation of flexible slender structures is described by means of Euler parameters. Euler parameter method is implemented effectively in incremental-iterative algorithm for 3D dynamic analysis. The normalization constraint of Euler parameters is efficiently satisfied by means of a sequential updating method.

  • PDF

A Study of Satisfaction on Smart Device and Station Rotation Model Application in Basic Medicine Class (기초의학 수업에서 스마트기기와 스테이션 로테이션 모델 적용에 대한 만족도 연구)

  • Lee, Mun-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.7
    • /
    • pp.651-658
    • /
    • 2020
  • The basic medical subjects are essential for the understanding of the major in the department of health science and are very important. Anatomy is one of the fundamental areas of medical education. On the other hand, the application of new teaching method is being attempted in various fields. Station rotation model, one of the blended learning, is also one of the popular teaching method. Station rotation model allows students to rotate through stations on a fixed schedule, where at least one of the stations is an online learning station. This study investigate the satisfaction of students when applying station rotation model to anatomy class. Each station in the station rotation model consisted of VR application learning, online problem solving, model observation and oral test. After applying station rotation model (2 weeks) to the 'Functional anatomy and Practice' course taken by 37 students of the'Department of Occupational Therapy'at H University, this study conducted a satisfaction survey compare with lecture class for students taking the course. At the result, station rotation model was significantly higher than lecture class in both understanding, interest, concentration and diversity degree. Based on these results, I suggest applying the station rotation model to the anatomy class because it also showed high satisfaction in that.

An implementation of a controller for a double inverted pendulum with a single actuator (단일 구동부를 갖는 2축 도립 진자를 위한 제어기 구현)

  • 남노현;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.257-260
    • /
    • 1997
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link is hinged on the plate to free for rotation in the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though the proposed inverted pendulum has no actuator in lower hinge. The algorithm to control the inverted pendulum is consisted of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a feedback linearization control for the rest of the range. Concept of the virtual work is employed to drive the linearlized model for the state feedback controller. The feedback linearization controller drives a DC motor with the modified reference joint angle from the fuzzy controller which adjusts a upright posture of a proposed pendulum system. Finally, the experiments are conducted to show the validity of the proposed controller.

  • PDF

Torque Profile Measuring and Sensibility Evaluation of a Haptic Device (햅틱 장치의 프로파일 측정 및 감성 평가)

  • Jun, Cha-Soo;Choo, Heon-Seong;Park, Se-Hyung;Kim, Lae-Hyun;Shin, Sang-Kyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.222-233
    • /
    • 2010
  • Developed in this research is a TP (tangible prototyping) system, which consists of two modules; (1) a virtual reality model to evaluate the functions and appearance of the product, and (2) a haptic device to emulate tactile and kinesthetic properties of mechanical dial knobs. As an example, a washing machine is modeled using a commercial CAD system and transformed in VRML and X3D formats. Some dynamic behaviors and kinematic characteristics are programmed using X3D script and Java. Various haptic behaviors of the dial are generated by modulating torque profile according to the rotation angle. A torque profile measuring system is developed to evaluate the behaviors of the haptic dial physically. Haptic sensibility evaluations are accomplished using the TP by semantic differential method.

Modeling and Dynamic Analysis of a Front Loaded Washing Machine with Ball Type Automatic Balancer (볼 자동균형장치를 채용한 드럼세탁기의 모델링 및 동적 거동 해석)

  • 이준영;조성오;김태식;박윤서
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.670-682
    • /
    • 1998
  • Ball type automatic balancer is used to reduce the vibration caused by unbalance of rotor. In this study, A analytic modeling of a front loaded washing machine with ball type automatic balancer has been suggested theoretically and ADAMS has been used to analyze the dynamic characteristics of automatic balancer. It is found from simulation and experimental results that the automatic balancer suppress the steady state vibration of washing machine effectively. The test results match with the simulation results of ADAMS, thereby the dynamic model of ADAMS can be used as virtual prototype to predict the vibration characteristics which could be changed by the modification of design variableand can reduce the design cycle sharphy. To maximize the balancing effect of automatic balancer, the friction between balls and race and the deviation between geometric center and rotation center of drum need to be minimized and the optimum design for the stiffness of flange shaft and the angular acceleration of drum should be achieved.

  • PDF