• Title/Summary/Keyword: virtual road

Search Result 174, Processing Time 0.027 seconds

A Method for Virtual Lane Estimation based on an Occupancy Grid Map (장애물 격자지도 기반 가상차선 추정 기법)

  • Ahn, Seongyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.773-780
    • /
    • 2015
  • Navigation in outdoor environments is a fundamental and challenging problem for unmanned ground vehicles. Detecting lane markings or boundaries on the road may be one of the solutions to make navigation easy. However, because of various environments and road conditions, a robust lane detection is difficult. In this paper, we propose a new approach for estimating virtual lanes on a traversable region. Estimating the virtual lanes consist of two steps: (i) we detect virtual road region through road model selection based on traversability at current frame and similarity between the interframe and (ii) we estimate virtual lane using the number of lane on the road and results of previous frame. To improve the detection performance and reduce the searching region of interests, we use a probability map representing the traversability of the outdoor terrain. In addition, by considering both current and previous frame simultaneously, the proposed method estimate more stable virtual lanes. We evaluate the performance of the proposed approach using real data in outdoor environments.

Study on the 3D Virtual Ground Modeling and Application for Real-time Vehicle Driving Simulation on Off-road (실시간 야지주행 시뮬레이션을 위한 3차원 가상노면의 구성 및 적용에 대한 연구)

  • Lee, Jeong-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • Virtual ground modeling is one of key topic for real-time vehicle dynamic simulation. This paper discusses about the virtual 3D road modeling process using parametric surface concept. General road data is a type of lumped position vector so interpolation process is required to compute contact of internal surface. The parametric surface has continuity and linearity within boundaries and functions are very simple to find out contact point. In this paper, the parametric surface formula is adopted to road modeling to calculate road hight. Position indexing method is proposed to reduce memory size and resource possession, and a simple mathematical method for contact patch searching is also proposed. The developed road process program is tested in dynamic driving simulation on off-road. Conclusively, the new virtual road program shows high performance of road hight computation in vast field of off-road simulation.

A Study on the Compensation of the Difference of Driving Behavior between the Driving Vehicle and Driving Simulator (가상주행과 실차주행의 운전자 주행행태 차이에 관한 연구)

  • Park, Jinho;Lim, Joonbeom;Joo, Sungkab;Lee, Soobeom
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.107-122
    • /
    • 2015
  • PURPOSES : The use of virtual driving tests to determine actual road driving behavior is increasing. However, the results indicate a gap between real and virtual driving under same road conditions road based on ergonomic factors, such as anxiety and speed. In the future, the use of virtual driving tests is expected to increase. For this reason, the purpose of this study is to analyze the gap between real and virtual driving on same road conditions and to use a calibration formula to allow for higher reliability of virtual driving tests. METHODS : An intelligent driving recorder was used to capture real driving. A driving simulator was used to record virtual driving. Additionally, a virtual driving map was made with the UC-Win/Road software. We gathered data including geometric structure information, driving information, driver information, and road operation information for real driving and virtual driving on the same road conditions. In this study we investigated a range of gaps, driving speeds, and lateral positions, and introduced a calibration formula to the virtual record to achieve the same record as the real driving situation by applying the effects of the main causes of discrepancy between the two (driving speed and lateral position) using a linear regression model. RESULTS: In the virtual driving test, driving speed and lateral position were determined to be higher and bigger than in the real Driving test, respectively. Additionally, the virtual driving test reduces the concentration, anxiety, and reality when compared to the real driving test. The formula includes four variables to produce the calibration: tangent driving speed, curve driving speed, tangent lateral position, and curve lateral position. However, the tangent lateral position was excluded because it was not statistically significant. CONCLUSIONS: The results of analyzing the formula from MPB (mean prediction bias), MAD (mean absolute deviation) is after applying the formula to the virtual driving test, similar to the real driving test so that the formula works. Because this study was conducted on a national, two-way road, the road speed limit was 80 km/h, and the lane width was 3.0-3.5 m. It works in the same condition road restrictively.

Development of a Visual Simulation System for the Motion Rider (모션 라이더를 위한 시각 시뮬레이션 시스템의 개발)

  • Kwon, Jung-Hoon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.55-61
    • /
    • 2005
  • In this paper, we propose the visual simulation system for virtual reality motion rider system. The visual simulation system can apply verity virtual reality system. This paper deals with programs on 3D automatic creation of terrain, road design, and a realtime rendering program for the virtual reality system. For the 3D automatic creation of terrain, DEM data and rectangular grid method are applied. We can make two different road object with the road design program. One of them includes road definition, and the other is obtained by using 'NURBS curve.' Visual simulation is consisted by additional modeling and real-time rendering. We can apply the programs made in this way to visual system of driving simulator.

Development of Autonomous Driving System Verification Environment through Advancement of K-City Virtual Driving Environment (K-City 가상주행환경 고도화를 통한 자율주행시스템 검증 환경 구축)

  • Beenhui Lee;Kwanhoe Huh;Jangu Lee;Namwoo Kim;Jongmin Yoon;Seonwoo Cho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.16-26
    • /
    • 2023
  • Recently, the importance of simulation in a virtual driving environment as well as real road-based tests for autonomous vehicle testing is increasing. Real road tests are being actively conducted at K-City, an autonomous driving test bed located at the Korea Automobile Safety Test & Research Institute of the Transportation Safety Authority. In addition, the need to advance the K-City virtual driving environment and build a virtual environment similar to the autonomous driving system test environment in real road tests is increasing. In this study, for K-City of Korea Automobile Safety Test & Research Institute, using detailed drawings and actual field data, K-City virtual driving environment was advanced, and similarity verification was verified through comparative analysis with actual K-City.

Construction Workers' Sensation-Seeking and Inattentiveness to Warning Alarms from Construction Vehicles

  • Kim, Namgyun;Gregoire, Laurent;Anderson, Brian A.;Ahn, Changbum R.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.261-268
    • /
    • 2022
  • In road work zones, pedestrian workers' habituated inattention to warning alarms from construction vehicles can lead to fatal accidents. Previous studies have theorized that human factors such as personality traits may affect workers' inattentiveness to workplace hazards. However, there has been no study that directly examined how road construction workers' personality traits affect their attention to warning alarms within a work zone and the likelihood of engagement in a struck-by accident. This study examines how workers' sensation-seeking (especially boredom susceptibility) is related to inattention to warning alarms while performing a task in road work zones. An experiment with actual road construction workers was conducted using a virtual road construction environment. Workers' attention to repeatedly presented warning alarms was measured using eye-tracking sensors. In response to workers' frequent inattentive behaviors, a virtual accident was simulated. Results revealed a significant association between boredom susceptibility and workers' engagement in the virtual accident, a consequence of inattentiveness to warning alarms. The findings suggest that workers' personality traits predispose them to tune out warning alarms and become vulnerable to accidents in road work zones. The findings of this study can be used to develop targeted interventions aimed at preventing workers' inattention to repeatedly exposed workplace hazards, thereby contributing to reducing fatal accidents in road work zones.

  • PDF

Road Alignment Design Using GIS

  • Kang, In-Joon;Lee, Jun-Seok;Kim, Tae-Hun;Park, Hyun
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • In this study, several basic data for road design and GIS data were used for selecting the optimized road alignment database system. The cut and fill volumes were compared with existing manual road design method through the analysis and data application in this database system. We solved and estimated objective, economic, environmental and technical problems caused in road construction comparing existing manual method with the road alignment which was selected in GIS automatically. Also, we performed three dimensional simulation with the existing road design program and simulation of virtual reality through Virtual GIS. This study showed the method in selecting the optimized road alignment through the analysis and comparison of the selected road alignment. The goal of this study is comparison and analysis of definite cut and fill volume and environmental problem after the road construction through analyzing and comparing the social, economic, technical and environmental aspect in the road alignments with various statistic data.

  • PDF

Autonomous Agents Navigating in Virtual Road Network

  • Cho, Eun-Sang;Choi, Kwang-Jin;Ko, Hyeongseok
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1997.04a
    • /
    • pp.81-85
    • /
    • 1997
  • In a virtual environment, agents must demonstrate some degree of realism and interactivity. This paper discusses the algorithm that enables agents to navigate a virtual road network realistically and interactively. The road description files written in this language provide the information of road environments to the navigating agents and the scene visualizer. We call this navigating agent in the road an ambient car. The ambient cars must follow the traffic rules as human does. To do this, the ambient car should continuously check its circumstances, such as, the traffic lights, lanes, road signs, and other ambient cars. Because of the huge scale of road network and the large number of ambient cars, the algorithm considers only the area where the participant is currently located. By this locality, the performance of the whole system does not fluctuate much in different situations. The behavior of ambient cars according to the predefined rules may appear monotonous. We added probability distribution functions to introduce some randomness. We implemented the above idea on silicon Graphics Indigo 2 workstation. The ambient car exhibited its awareness of lanes, traffic lights, and other cars. The participants could hardly distinguish between a human-controlled car and computer-controlled ambient car generated by the algorithm.

  • PDF

Development of Road Safety Estimation Method using Driving Simulator and Eye Camera (차량시뮬레이터 및 아이카메라를 이용한 도로안전성 평가기법 개발)

  • Doh, Tcheol-Woong;Kim, Won-Keun
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.185-202
    • /
    • 2005
  • In this research, to get over restrictions of a field expreiment, we modeled a planning road through the 3D Virtual Reality and achieved data about dynamic response related to sector fluctuation and about driver's visual behavior on testers' driving the Driving Simulator Car with Eye Camera. We made constant efforts to reduce the non-reality and side effect of Driving Simulator on maximizing the accord between motion reproduction and virtual reality based on data Driving Simulator's graphic module achieved by dynamic analysis module. Moreover, we achieved data of driver's natural visual behavior using Eye Camera(FaceLAB) that is able to make an expriment without such attaching equipments such as a helmet and lense. In this paper, to evaluate the level of road's safety, we grasp the meaning of the fluctuation of safety that drivers feel according to change of road geometric structure with methods of Driving Simulator and Eye Camera and investigate the relationship between road geometric structure and safety level. Through this process, we suggest the method to evaluate the road making drivers comfortable and pleasant from planning schemes.

  • PDF

Virtual Reality Driving Simulation for Evaluation of Road Safety Facilities (도로안전시설물 평가를 위한 가상현실 운전 시뮬레이션 구축)

  • Chae, Byeong Hoon;Chae, Ho Keun;Lee, Joo Yeoun
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.249-257
    • /
    • 2018
  • The purpose of this study is to construct a virtual reality simulation environment for searching and evaluating evaluation criteria for road safety facilities with new technologies. Virtual reality simulation requires high realism and accurate behavior data extraction. To do this, we used the Unreal Engine to create the environment by dividing it into an external environment and a vehicle environment. After that, a sample simulation for the luminescent road markers and preliminary experiments were conducted. As a result, luminescent road markers showed better 5m interval than 10m interval. It can be confirmed that it can be used in the simulation for searching the evaluation criteria for the new road safety facilities that incorporate the new technology in the future. In the future, it will be possible to simulate various environments by adding modeling and sample components for other road facilities.