• Title/Summary/Keyword: virtual ground

Search Result 199, Processing Time 0.033 seconds

Intelligent Control of a Virtual Walking Machine for Virtual Reality Interface (가상현실 대화용 가상걸음 장치의 지능제어)

  • Yoon, Jung-Won;Park, Jang-Woo;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.926-934
    • /
    • 2006
  • This paper proposes intelligent control of a virtual walking machine that can generate infinite floor for various surfaces and can provide proprioceptive feedback of walking to a user. This machine allows users to participate in a life-like walking experience in virtual environments with various terrains. The controller of the machine is implemented hierarchically, at low-level for robust actuator control, at mid-level fur platform control to compensate the external forces by foot contact, and at high-level control for generating walking trajectory. The high level controller is suggested to generate continuous walking on an infinite floor for various terrains. For the high level control, each independent platform follows a man foot during the swing phase, while the other platform moves back during single stance phase. During double limb support, two platforms manipulate neutral positions to compensate the offset errors generated by velocity changes. This control can, therefore, satisfy natural walking conditions in any direction. Transition phase between the swing and the stance phases is detected by using simple switch sensor system, while human foot motions are sensed by careful calibration with a magnetic motion tracker attached to the shoe. Experimental results of walking simulations at level ground, slope, and stairs, show that with the proposed machine, a general person can walk naturally on various terrains with safety and without any considerable disturbances. This interface can be applied to various areas such as VR navigations, rehabilitation, and gait analysis.

Physiological and Subjective Measures of Anxiety with Repeated Exposure to Virtual Construction Sites at Different Heights

  • Sachini N.K. Kodithuwakku Arachchige;Harish Chander;Alana J. Turner;Alireza Shojaei;Adam C. Knight;Aaron Griffith;Reuben F. Burch;Chih-Chia Chen
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.303-308
    • /
    • 2023
  • Background: Occupational workers at altitudes are more prone to falls, leading to catastrophic outcomes. Acrophobia, height-related anxiety, and affected executive functions lead to postural instabilities, causing falls. This study investigated the effects of repeated virtual height exposure and training on cognitive processing and height-related anxiety. Methods: Twenty-eight healthy volunteers (age 20.48 ± 1.26 years; mass 69.52 ± 13.78 kg) were recruited and tested in seven virtual environments (VE) [ground (G), 2-story altitude (A1), 2-story edge (E1), 4-story altitude (A2), 4-story edge (E2), 6-story altitude (A3), and 6-story edge (E3)] over three days. At each VE, participants identified occupational hazards present in the VE and completed an Attitude Towards Heights Questionnaire (ATHQ) and a modified State-Trait Anxiety Inventory Questionnaire (mSTAIQ). The number of hazards identified and the ATHQ and mSTAIQ scores were analyzed using a 7 (VE; G, A1, A2, A3, E1, E2, E3) x 3 (DAY; DAY 1, DAY 2, DAY 3) factorial repeated measures analysis of variance. Results: The participants identified the lowest number of hazards at A3 and E3 VEs and on DAY 1 compared to other VEs and DAYs. ATHQ scores were lowest at G, A1, and E1 VEs. Conclusion: Cognitive processing is negatively affected by virtual altitudes, while it improves with short-term training. The features of virtual reality, such as higher involvement, engagement, and reliability, make it a better training tool to be considered in ergonomic settings. The findings of this study will provide insights into cognitive dual-tasking at altitude and its challenges, which will aid in minimizing occupational falls.

Virtual Target Overlay Technique by Matching 3D Satellite Image and Sensor Image (3차원 위성영상과 센서영상의 정합에 의한 가상표적 Overlay 기법)

  • Cha, Jeong-Hee;Jang, Hyo-Jong;Park, Yong-Woon;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1259-1268
    • /
    • 2004
  • To organize training in limited training area for an actuai combat, realistic training simulation plugged in by various battle conditions is essential. In this paper, we propose a virtual target overlay technique which does not use a virtual image, but Projects a virtual target on ground-based CCD image by appointed scenario for a realistic training simulation. In the proposed method, we create a realistic 3D model (for an instructor) by using high resolution Geographic Tag Image File Format(GeoTIFF) satellite image and Digital Terrain Elevation Data (DTED), and extract the road area from a given CCD image (for both an instructor and a trainee). Satellite images and ground-based sensor images have many differences in observation position, resolution, and scale, thus yielding many difficulties in feature-based matching. Hence, we propose a moving synchronization technique that projects the target on the sensor image according to the marked moving path on 3D satellite image by applying Thin-Plate Spline(TPS) interpolation function, which is an image warping function, on the two given sets of corresponding control point pair. To show the experimental result of the proposed method, we employed two Pentium4 1.8MHz personal computer systems equipped with 512MBs of RAM, and the satellite and sensor images of Daejoen area are also been utilized. The experimental result revealed the effective-ness of proposed algorithm.

Aerodynamic Optimization of 3 Dimensional Wing-In-Ground Airfoils Using Multi-Objective Genetic Algorithm (지면효과를 받는 3 차원 WIG 선의 익형 형상 최적화)

  • Lee, Ju-Hee;You, Keun-Yeal;Park, Kyoung-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3080-3085
    • /
    • 2007
  • Shape optimization of the 3-dimensional WIG airfoil with 3.0-aspect ratio has been performed by using the multi-objective genetic algorithm. The WIG ship effectively floating above the surface by the ram effect and the virtual additional aspect ratio by a ground is one of next-generation and cost-effective transportations. Unlike the airplane flying out of the ground effect, a WIG ship has possibility to capsize because of unsatisfying the static stability. The WIG ship should satisfy aerodynamic properties as well as a static stability. They tend to strong contradict and it is difficult to satisfy aerodynamic properties and static stability simultaneously. It is inevitable that lift force has to scarify to obtain a static stability. Multi-objective optimization technique that the individual objectives are considered separately instead of weighting can overcome the conflict. Due to handling individual objectives, the optimum cannot be unique but a set of nondominated potential solutions: pareto optimum. There are three objectives; lift coefficient, lift-to-drag ratio and static stability. After a few evolutions, the non-dominated pareto individuals can be obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space

  • PDF

The Effect of Virtual Reality-Based Exercise Program on Balance, Gait, and Falls Efficacy in Patients with Parkinson's Disease (가상현실 운동프로그램이 파킨슨병 환자의 균형, 보행 및 낙상 효능감에 미치는 영향)

  • Kim, Yong-Gyun;Kang, Soon-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.4
    • /
    • pp.103-113
    • /
    • 2019
  • PURPOSE: The purpose of this study was to determine if virtual reality-based exercise was effective in balance, gait, and falls efficacy in patients with Parkinson's disease (PD). METHODS: Thirty patients with PD were assigned randomly to the experimental (n=15) or control groups (n=15). The experimental group performed virtual reality-based exercise and the control group underwent conventional physical therapy for 30minutes, five times per week for four weeks. A force platform system, the Korean version of the Berg Balance Scale (K-BBS), the six-minute walking test (6MWT), and the Korean Version of the Falls Efficacy Scale (K-FES) were used to evaluate balance, gait, and falls efficacy. Wilcoxon signed-rank test and Mann-Whitney U test were used to examine the within- and between-group differences after training, respectively. RESULTS: Changes in the K-BBS score (p<.001) and fall efficacy (p<.01), following the intervention were significantly greater in the experimental group than in the control group whereas significant group difference were not observed for the anterior-posterior and mediolateral postural sway lengths. The change in the ground reaction force (p<.001) and 6MWT values (p<.05) were significantly greater after intervention in patients in the experimental group than in the control group, whereas a significant group difference was not observed for the step and stride lengths. CONCLUSION: This study indicates that virtual reality-based exercise is an effective intervention for improving balance, gait, and fall efficacy in patients with PD.

Capture of Foot Motion for Real-time Virtual Wearing by Stereo Cameras (스테레오 카메라로부터 실시간 가상 착용을 위한 발동작 검출)

  • Jung, Da-Un;Yun, Yong-In;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1575-1591
    • /
    • 2008
  • In this paper, we propose a new method detecting foot motion capture in order to overlap in realtime foot's 3D virtual model from stereo cameras. In order to overlap foot's virtual model at the same position of the foot, a process of the foot's joint detection to regularly track the foot's joint motion is necessary, and accurate register both foot's virtual model and user's foot in complicated motion is most important problem in this technology. In this paper, we propose a dynamic registration using two types of marker groups. A plane information of the ground handles the relationship between foot's virtual model and user's foot and obtains foot's pose and location. Foot's rotation is predicted by two attached marker groups according to instep of center framework. Consequently, we had implemented our proposed system and estimated the accuracy of the proposed method using various experiments.

  • PDF

The Effects of Virtual Reality-based Continuous Slow Exercise on Factors for Falls in the Elderly (가상현실에서 연속적 느린 운동이 노인의 낙상 요인에 미치는 영향)

  • Kim, Jung-Jin;Gu, Seul;Lee, Jin-Ju;Kim, Yu-Shin;Yoon, Bum-Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.90-97
    • /
    • 2012
  • Purpose: The purpose of this study was to assess the effects of virtual reality-based continuous slow exercise on muscle strength and dynamic balance capacity, in older adults over 65 years of age. Methods: Twenty-six volunteers were randomly divided into two groups; a Virtual Reality (VR) exercise-group ($67.8{\pm}4.1$ yrs) and a Control group ($65.5{\pm}5.2$ yrs). The VR group participated in eight weeks of virtual reality exercise, utilizing modified Tai-Chi provided by a motion capture system, and the Control group had no intervention. The hip muscle strength and dynamic balance of the members of both the VR group and the Control group were measured at pre- and post-intervention, using a multimodal dynamometer, and backward stepping test, respectively. Results: 1. After the 8-week VR-based exercise, the VR group showed significant improvement of hip strength, compared to the control group: hip extension (p=0.00), flexion (p=0.00), abduction (p=0.00), and adduction (p=0.00). 2. After the 8-week VR-based exercise, the VR group showed significant improvement of dynamic balance capacity as ground reaction force, compared to the control group. Eyes opened backward stepping test: Fx (+) (p=0.00), Fy (-) (p=0.02), Ver (+) (p=0.02) direction. Eyes closed backward stepping test: Fx (+) (p=0.04), Fy (-) (p=0.04), Ver (+) (p=0.03) direction. Conclusion: The VR group showed improvement of their hip muscle strength, and dynamic balance capacity. Therefore VR-based continuous slow exercise would contribute to reducing the risk of falls in the elderly.

A Study on the Development of the VTL Vehicle Dynamics Model to Analyze Vibration Characteristics (차량 진동특성 해석을 위한 VTL 차량 모델 개발에 관한 연구)

  • Kwon, Seong-Jin;Bae, Chul-Yong;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.409-414
    • /
    • 2007
  • Nowadays, with the advancement of computational mechanics, and vehicle dynamics simulation linked up with virtual testing laboratory(VTL) and virtual proving ground(VPG) technologies has become a useful method for analyzing numerous driving performances and diverse noise/vibration characteristics. In this paper, the analytical vehicle model based on multi-body dynamics theory was developed to investigate the vibration characteristics according to various road conditions. For the purpose, the whole vehicle parameters, each vehicle's part parameter, and part connecting elements such as spring, damper, and bush were measured by an experiment. Also, the vehicle dynamics model, which includes the front suspension, rear suspension, steering, front wheel, rear wheel, and body subsystems has been constructed for computer simulation. With the developed vehicle dynamics model, three forces and three moments measured at each wheel center were applied to evaluate and analyze dynamics and vibration characteristics for miscellaneous road conditions.

  • PDF

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

In-Vehicle AR-HUD System to Provide Driving-Safety Information

  • Park, Hye Sun;Park, Min Woo;Won, Kwang Hee;Kim, Kyong-Ho;Jung, Soon Ki
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1038-1047
    • /
    • 2013
  • Augmented reality (AR) is currently being applied actively to commercial products, and various types of intelligent AR systems combining both the Global Positioning System and computer-vision technologies are being developed and commercialized. This paper suggests an in-vehicle head-up display (HUD) system that is combined with AR technology. The proposed system recognizes driving-safety information and offers it to the driver. Unlike existing HUD systems, the system displays information registered to the driver's view and is developed for the robust recognition of obstacles under bad weather conditions. The system is composed of four modules: a ground obstacle detection module, an object decision module, an object recognition module, and a display module. The recognition ratio of the driving-safety information obtained by the proposed AR-HUD system is about 73%, and the system has a recognition speed of about 15 fps for both vehicles and pedestrians.