• Title/Summary/Keyword: virtual environment

Search Result 2,709, Processing Time 0.031 seconds

A Study on Robot OLP Compensation Based on Image Based Visual Servoing in the Virtual Environment (가상 환경에서의 영상 기반 시각 서보잉을 통한 로봇 OLP 보상)

  • Shin Chan-Bai;Lee Jeh-Woon;Kim Jin-Dae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.248-254
    • /
    • 2006
  • It is necessary to improve the exactness and adaptation of the working environment for the intelligent robot system. The vision sensor have been studied for a long time at this points. However, it has many processes and difficulties for the real usages. This paper proposes a visual servoing in the virtual environment to support OLP(Off-Line-Programming) path compensation and supplement the problem of complexity of the old kinematical calibration. Initial robot path could be compensated by pixel differences between real and virtual image. This method removes the varies calibrations and 3D reconstruction process in real working space. To show the validity of the proposed approach, virtual space servoing with stereo camera is carried out with WTK and openGL library for a KUKA-6R manipulator and updated real robot path.

3D Character Animation: A Brief Review

  • Song, Hyewon;Heo, Suwoong;Kang, Jiwoo;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Virtual Reality makes a virtual environment more realistic and, furthermore, it provides a variety of experiences which we cannot have in reality. A drastic growth of GPU performance and increase of computing capability make virtual environment more realistic than ever. One important element of constructing virtual environment is to animate 3D characters. Many researchers have been studying 3D characters animating and a myriad of methods have been proposed to make them more realistic. In this paper, we discuss the technologies and characteristics of 3D character animation. We believe that realistic characters in Virtual Reality will be applied to various fields: education, film and game industry, business and, particularly, medical area such as telemedicine, virtual surgery, etc.

Mini-Teleoperation system with a Force-Feedback Haptic Interface within a Virtual Environment (가상환경에서 힘 반영 촉각장치를 이용한 소형 원격조정 시스템)

  • 김대현;김영동;이현의
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.116-122
    • /
    • 1998
  • This Paper presents some of challenges of creating feedback force, through manipulation of master manipulator, allowing the user to feel objects within a virtual environment. A sense of touch for the virtual environment. A sense of touch for the virtual environments was generated by a virtual compliance control method. In theis system data communication between the master and slave, we used TCP protocol. In the experiments. A position error between the master and slave arm was about $13.56^{\circ}$ in case that the master and slave arm had not compliance properties of the virtual object, while they have the its properties the position error reduced by $2.43^{\circ}$.

  • PDF

Neuroscientific Review on Sensory Stimulation Therapy and Virtual Reality for Somatosensory Rehabilitation

  • Kim, Tae-Hoon;Kim, Yo-Seob
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2010
  • This study details the neuroscientific concept of somatosensation, general sensory stimulation therapy and virtual reality therapy. Somatosensation is a method that the human body uses to accept information from the inner and outer parts of the body. A traditional sensory stimulation therapy was designed to maximize neural recovery, but the neural recovery is most effective when the therapeutic environment is similar to real life. The virtual reality provides natural environment that users may perceive as meaningful and even participants with significant impairment can perform some of the activities of their daily lives within the virtual environment. The virtual reality will become a complementary part of somatosensory rehabilitation.

Implementation of Background Scene in the Virtual Reality Ship Simulator (가상현실 선박 시뮬레이터의 배경 구현)

  • 임정빈
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.1
    • /
    • pp.11-22
    • /
    • 2000
  • The paper describes creation methods of background scenes to implement realistic virtual environments in the VRSS (Virtual Reality Ship Simulator). VRSS is next-generation system constructed with virtual tools in a virtual space. Thus, it could have many benefits compared to conventional ship simulators composed with heavy bridge mock-up system and wide visual presentations. In this work, we developed effective 3D object modeling techniques, and constructed virtual harbor scene by using 3D-Webmaster authoring tool. The virtual harbor was built with object-oriented 3D objects modeled to interact with user's action. With the immersion-type VR system, we created virtual harbor environments in a virtual space, and discussed on the naturalness of the scene with test results of SDMPA (Semantic Differential Method for Psychophysical Assessment) by 10 subjects. As the results of subject assessment, all of the participants could felt natural-like harbor. Therefore, we found that the proposed creation methods and procedures of background scene are enabling to fit to the full mission VRSS construction.

  • PDF

Navigation Characteristics of a Virtual Human using a Limited Perception-based Mapping (제한적 인지 기반의 맵핑을 이용한 가상인간의 항해 특성)

  • Han, Chang-Hee;Kim, Lae-Hyun;Kim, Tae-Woo
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.93-103
    • /
    • 2005
  • This paper presents characteristics of a virtual human's navigation using a limited perception-based mapping. Previous approaches to virtual human navigation have used an omniscient perception requiring full layout of a virtual environment in advance. However, these approaches have a limitation on being a fundamental solution for a human-likeness of a virtual human, because behaviors of humans are basically based on their limited perception instead of omniscient perception. In this paper, we integrated Hill's mapping algorithm with a virtual human to experiment virtual human's navigation with the limited perception. This approach does not require full layout of the virtual environment, 360-degree's field of view, and vision through walls. In addition to static objects such as buildings, we consider enemy emergence that can affect an virtual human's navigation. The enemy emergence is used as the variable on the experiment of this present research. As the number of enemies varies, the changes in arrival rate and time taken to reach the goal position were observed. The virtual human navigates by two conditions. One is to take the shortest path to the goal position, and the other is to avoid enemies when the virtual human encounters them. The acquired result indicates that the virtual human's navigation corresponds to a human cognitive process, and thus this research can be a framework for human-likeness of virtual humans.

  • PDF

Test of Vision Stabilizer for Unmanned Vehicle Using Virtual Environment and 6 Axis Motion Simulator (가상 환경 및 6축 모션 시뮬레이터를 이용한 무인차량 영상 안정화 장치 시험)

  • Kim, Sunwoo;Ki, Sun-Ock;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.227-233
    • /
    • 2015
  • In this study, an indoor test environment was developed for studying the vision stabilizer of an unmanned vehicle, using a virtual environment and a 6-axis motion simulator. The real driving environment was replaced by a virtual environment based on the Aberdeen Proving Ground bump test course for military tank testing. The vehicle motion was reproduced by a 6-axis motion simulator. Virtual reality driving courses were displayed in front of the vision stabilizer, which was located on the top of the motion simulator. The performance of the stabilizer was investigated by checking the image of the camera, and the pitch and roll angles of the stabilizer captured by the IMU sensor of the camera.

Development of UAV Teleoperation Virtual Environment Based-on GSM Networks and Real Weather Effects

  • AbdElHamid, Amr;Zong, Peng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-474
    • /
    • 2015
  • Future Ground Control Stations (GCSs) for Unmanned Aerial Vehicles (UAVs) teleoperation targets better situational awareness by providing extra motion cues to stimulate the vestibular system. This paper proposes a new virtual environment for long range Unmanned Aerial Vehicle (UAV) control via Non-Line-of-Sight (NLoS) communications, which is based on motion platforms. It generates motion cues for the teleoperator for extra sensory stimulation to enhance the guidance performance. The proposed environment employs the distributed component simulation over GSM network as a simulation platform. GSM communications are utilized as a multi-hop communication network, which is similar to global satellite communications. It considers a UAV mathematical model and wind turbulence effects to simulate a realistic UAV dynamics. Moreover, the proposed virtual environment simulates a Multiple Axis Rotating Device (MARD) as Human Machine Interface (HMI) device to provide a complete delay analysis. The demonstrated measurements cover Graphical User Interface (GUI) capabilities, NLoS GSM communications delay, MARD performance, and different software workload. The proposed virtual environment succeeded to provide visual and vestibular feedbacks for teleoperators via GSM networks. The overall system performance is acceptable relative to other Line-of-Sight (LoS) systems, which promises a good potential for future long range, medium altitude UAV teleoperation researches.

Simulation of Events Using Contour Map in the Virtual Environment (등고선을 이용한 가상환경 시뮬레이션에서의 이벤트 표현)

  • Park Jong-Hee;Oh Kyu-Yol
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.5
    • /
    • pp.42-55
    • /
    • 2006
  • In most multimedia systems, the environment is considered as a passive background. In virtual environment simulating real world, however, terrain affects many events such as wind, rain, cloud. Therefore, it is necessary to model terrain and meteorological phenomenon in order to simulate realistic virtual environment. In those modeling, not only height and location information but also environmental factors such as temperature and humidity are important. An event is composed of many activities and subevents based on causality and consists of precondition , procedure and effects. Each part of an event is formulated in terms of a number of parameter variables, which correspond to its associated factors on existence or states of entities and relation. This paper represents terrain and environmental factor using contour map. Moreover, we define various events and their procedures in terms of causality in virtual environment.

  • PDF

Application of Immersive Virtual Environment Through Virtual Avatar Based On Rigid-body Tracking (강체 추적 기반의 가상 아바타를 통한 몰입형 가상환경 응용)

  • MyeongSeok Park;Jinmo Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.69-77
    • /
    • 2023
  • This study proposes a rigid-body tracking based virtual avatar application method to increase the social presence and provide various experiences of virtual reality(VR) users in an immersive virtual environment. The proposed method estimates the motion of a virtual avatar through inverse kinematics based on real-time rigid-body tracking based on motion capture using markers. Through this, it aims to design a highly immersive virtual environment with simple object manipulation in the real world. Science experiment educational contents are produced to experiment and analyze applications related to immersive virtual environments through virtual avatars. In addition, audiovisual education, full-body tracking, and the proposed rigid-body tracking method were compared and analyzed through survey. In the proposed virtual environment, participants wore VR HMDs and conducted a survey to confirm immersion and educational effects from virtual avatars performing experimental educational actions from estimated motions. As a result, through the method of utilizing virtual avatars based on rigid-body tracking, it was possible to induce higher immersion and educational effects than traditional audiovisual education. In addition, it was confirmed that a sufficiently positive experience can be provided without much work for full-body tracking.