• Title/Summary/Keyword: virtual boundary

Search Result 258, Processing Time 0.027 seconds

Approximating 3D General Sweep Boundary using Graphics Hardware (그래픽스 하드웨어를 이용한 입체 스윕 경계 근사)

  • An, Jae-U;Kim, Myeong-Su;Hong, Seong-Je
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a practical technique for approximating the boundary surface of the volume swept out by three-dimensional objects using the depth-buffer. Objects may change their geometries and orientations while sweeping. The sweep volume is approximated as a union of volume elements, which are just rendered inside appropriate viewing frusta of virtual cameras and mapped into screen viewports with depth-buffer. From the depth of each pixel in the screen space of each rendering, the corresponding point in the original world space can be computed. Appropriately connecting these points yields polygonal faces forming polygonal surface patches approximately covering some portion of the sweep volume. Each view frustum adds one or more surface patches in this way, and these presumably overlapped polygonal surface patches approximately enclose the whole sweep volume. These patches may further be processed to yield non-overlapped polygonal surfaces as an approximation to the boundary of the original 3D sweep volume.

  • PDF

A Verification of the Accuracy of the Deformable Model in 3 Dimensional Vessel Surface Reconstruction (혈관표면의 3차원 재구성을 위한 Deformable model의 정확성 검증에 관한 연구)

  • Kim, H.C.;Oh, J.S.;Kim, H.R.;Cho, S.B.;Sun, K.;Kim, M.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.3-5
    • /
    • 2005
  • Vessel boundary detection and modeling is a difficult but a necessary task in analyzing the mechanics of inflammation and the structure of the microvasculature. In this paper we present a method of analyzing the structure by means of an active contour model(using GVF Snake) for vessel boundary detection and 3D reconstruction. For this purpose we used a virtual vessel model and produced a phantom model. From these phantom images we obtained the contours of the vessel by GVF Snake and then reconstructed a 3D structure by using the coordinates of snakes.

  • PDF

SPH Algorithm for an Elasto-Plastic Contact Analysis on a Rigid Surface with an Arbitrary Shape (임의 형상의 강체면 탄소성 접촉 해석을 위한 SPH 알고리듬)

  • Lee Jaehoon;Min Oakkey;Seo Songwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.30-37
    • /
    • 2005
  • There is few research about contact problem for a rigid surface with an arbitrary shape in SPH. The variational equation based on the virtual work principle is derived and its solution is obtained by the penalty method. It is proposed a new method that can determine the parameters for a penetration and a penetration rate used in the penalty method. The reproducing condition is adopted to correct the deficiency of kernel on the boundary. In order to calculate a penetration of particles, after checking boundary particles for deformable body, boundary normal vectors were determined on the rigid surface. Numerical simulations for models which have rigid surface with an arbitrary shape were conducted to validate the proposed method in 2D Cartesian and cylindrical coordinate. The results of those analysis represent that the contact algorithm proposed in this study works properly.

IBEM analyses on half-cell potential measurement for NDE of rebar corrosion

  • Kyung, Je-Woon;Tae, Sung-Ho;Lee, Han-Seung;Alver, Yalcin;Yoo, Jo-Hyeong
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.285-298
    • /
    • 2007
  • Corrosion of Reinforcement (rebar) is nondestructively estimated by the half-cell potential measurement. As is the case with other nondestructive testings (NDT), understanding of the underlying principles should be clarified in order to obtain meaningful results. Therefore, the measurement of potentials in concrete is analytically investigated. The effect of internal defects on the potentials measured is clarified numerically by the boundary element method (BEM). Thus, a simplified inversion by BEM is applied to convert the potentials on concrete surface to those on rebars, taking into account the concrete resistivity. Because the potentials measured on concrete surface are so sensitive to moisture content, concrete resistivity and surface condition, an inverse procedure to convert the potentials on concrete surface into those on rebars is developed on the basis of BEM. It is found that ASTM criterion is practically applicable to estimate corrosion from the potential values converted. In experiments, an applicability of the procedure is examined by accelerated corrosion tests of reinforced concrete (RC) slabs. For practical use, the procedure is developed where results of IBEM are visualized by VRML (Virtual Reality modeling Language) in three-dimensional space.

Basic study on development of drinking water treatment process simulators (정수처리공정 시뮬레이터 개발 기초연구)

  • Byun, Yong-Hoon;Shin, Hwi-Su;Kim, Ho-Yong;Jung, Nahm-Chung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.5
    • /
    • pp.351-365
    • /
    • 2021
  • Water treatment process simulator is the tool for predicting sequential changes of water quality in a train of unit processes. This predicts the changes through governing equations that represent physicochemical performance of each unit processes with an initial and boundary conditions. Since there is no operational data for the design of a water treatment facility, there is no choice but to predict the performance of the facility by assuming initial and boundary conditions in virtual reality. Therefore, a simulator that can be applied in the design stage of a water treatment facility has no choice but to be built as a numerical analysis model of a deductive technique. In this study, we had conducted basic research on governing equations, inter-process data-flow, and simulator algorithms for the development of simulators. Lastly, this study will contribute to design engineering tool development research in the future by establishing the water treatment theory so that it can be programmed in a virtual world and suggesting a method for digital transformation of the water treatment process.

Stability Analysis of a Haptic System with a Human Impedance model using the Routh-Hurwitz Criterion (루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 이용한 인간의 임피던스가 포함된 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1813-1818
    • /
    • 2014
  • This paper presents the stability analysis of the haptic system including a human impedance using the Routh-Hurwitz criterion. The reflective force is computed from a virtual spring model and is transferred to a human operator using the first-order-hold method. The stability boundary conditions are induced and the relation among a virtual spring ($K_w$), the mass ($M_h$), the damping ($B_h$) and the stiffness ($K_h$) of a human impedance is analyzed. Hence the stability boundary of the virtual spring ($K_w$) is proposed as $K_w{\leq}54413{\sqrt{(M_h+M_d)(B_h+B_d)}}-0.486K_h$ when the sampling time is 1 ms. The average relative error is about 0.5% when the mathematical analysis results are compared with the results of the stability boundary model.

Bending analysis of functionally graded plates with arbitrary shapes and boundary conditions

  • Panyatong, Monchai;Chinnaboon, Boonme;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.627-641
    • /
    • 2019
  • The paper focuses on bending analysis of the functionally graded (FG) plates with arbitrary shapes and boundary conditions. The material property of FG plates is modelled by using the power law distribution. Based on the first order shear deformation plate theory (FSDT), the governing equations as well as boundary conditions are formulated and obtained by using the principle of virtual work. The coupled Boundary Element-Radial Basis Function (BE-RBF) method is established to solve the complex FG plates. The proposed methodology is developed by applying the concept of the analog equation method (AEM). According to the AEM, the original governing differential equations are replaced by three Poisson equations with fictitious sources under the same boundary conditions. Then, the fictitious sources are established by the application of a technique based on the boundary element method and approximated by using the radial basis functions. The solution of the actual problem is attained from the known integral representations of the potential problem. Therefore, the kernels of the boundary integral equations are conveniently evaluated and readily determined, so that the complex FG plates can be easily computed. The reliability of the proposed method is evaluated by comparing the present results with those from analytical solutions. The effects of the power index, the length to thickness ratio and the modulus ratio on the bending responses are investigated. Finally, many interesting features and results obtained from the analysis of the FG plates with arbitrary shapes and boundary conditions are demonstrated.

A Boundary-layer Stress Analysis of Laminated Composite Beams via a Computational Asymptotic Method and Papkovich-Fadle Eigenvector (전산점근해석기법과 고유벡터를 이용한 복합재료 보의 경계층 응력 해석)

  • Sin-Ho Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.41-47
    • /
    • 2024
  • This paper utilizes computational asymptotic analysis to compute the boundary layer solution for composite beams and validates the findings through a comparison with ANSYS results. The boundary layer solution, presented as a sum of the interior solution and pure boundary layer effects, necessitates a mathematically rigorous formalization for both interior and boundary layer aspects. Computational asymptotic analysis emerges as a robust technique for addressing such problems. However, the challenge lies in connecting the boundary layer and interior solutions. In this study, we systematically separate the principles of virtual work and the principles of Saint-Venant to tackle internal and boundary layer issues. The boundary layer solution is articulated by calculating the Papkovich-Fadle eigenfunctions, representing them as linear combinations of real and imaginary vectors. To address warping functions in the interior solutions, we employed a least squares method. The computed solutions exhibit excellent agreement with 2D finite element analysis results, both quantitatively and qualitatively. This validates the effectiveness and accuracy of the proposed approach in capturing the behavior of composite beams.

Photorealism Effect of 3D Technical Realization - With an Emphasis on Image Reproduction of (3D 기술구현에서의 포토리얼리즘 효과 - 겨울왕국의 이미지 재현성을 중심으로)

  • Park, Kyung Mi;Yang, Jong Hoon
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.259-280
    • /
    • 2014
  • Animation is showing the highest record in entertainment around the world and writing the history of 3D animation again. The image contents effect thanks to the proper introduction of the state-of-art digital technology, which is one of the causes of the outstanding entertainment and the factual reproduction of the images, provided an opportunity to transmit the meaning of image aesthetics, which is a virtual reality and image reproduction through the reality realization of photo medium, and to reinterpret the boundary of virtual reality. Especially, the development of digital contents technology due to scientific technologies demolishes the boundary of virtual reality and reality and creates the effect of making viewers be absorbed by realizing the virtual reality by means of 3D reality images which highlight the special characteristic of photos. The aspect of the contents technology and image aesthetics which can be interpreted in a view point beyond the existing concept of reality is found in the aura theory of Benjamin and in the Simulacres of Baudrillard. The 3D image by photo-reality herein presents various suggestions in the aspect of real existence of spatial expression, the meaning creation process of reality, the existence value of virtual images.

Simulating a Time Reversal Process for A0 Lamb Wave Mode on a Rectangular Plate Using a Virtual Sensor Array Model (가상 탐지자 배열 모델을 이용한 직사각형 판에서 A0 램파 모드 시간반전과정 모사)

  • Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.460-469
    • /
    • 2010
  • This paper presents the analysis of a time reversal process for $A_0$ Lamb wave mode($A_0$ mode) on a rectangular plate. The dispersion characteristic equation of the $A_0$ mode is approximated using the Timoshenko beam theory. A virtual sensor array model is developed to consider the effects of reflections occurring on the plate boundary on the time reversal process. The time reversal process is formulated in the frequency domain using the virtual sensor array model. The reconstructed signal is obtained in the time domain through an inverse fast Fourier transform. The validity of the proposed method is demonstrated through the comparison to the numerical simulation results computed by the finite element analysis.