• Title/Summary/Keyword: virtual boundary

Search Result 258, Processing Time 0.029 seconds

Angular Effect of Virtual Vertices Inserted to Treat The Boundary Edges on an Infinite Conducting Surface

  • Hwang, Ji-Hwan;Kweon, Soon-Koo;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • This study presents the angular effects of virtual vertices inserted for effective treatment of the boundary edge laid on an infinite conducting surface in a half-space scattering problem. We investigated the angular effects of virtual vertices by first computing the radar cross section (RCS) of a specific scatterer; i.e., a tilted conducting plate in contact with the ground surface, by inserting the virtual vertex in half-space. Here, the electric field integral equation is used to solve this problem with various virtual vertex angles (${\theta}_{\nu}$) and conducting plate inclination angles (${\theta}_r$) ranging from $0^{\circ}$ to $180^{\circ}$. The effects of the angles ${\theta}_{\nu}$ and ${\theta}_r$ on the RCS computation are clearly shown with numerical results with and without the virtual vertices in free- and half-spaces.

Boundary Noise Removal and Hole Filling Algorithm for Virtual Viewpoint Image Generation (가상시점 영상 생성을 위한 경계 잡음 제거와 홀 채움 기법)

  • Ko, Min-Soo;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.679-688
    • /
    • 2012
  • In this paper, performance improved hole-filling algorithm including boundary noise removing pre-process which can be used for an arbitrary view synthesis with given two views is proposed. Boundary noise usually occurs because of the boundary mismatch between the reference image and depth map and common-hole is defined as the occluded region. These boundary noise and common-hole created while synthesizing a virtual view result in some defects and they are usually very difficult to be completely recovered by using only given two images as references. The spiral weighted average algorithm gives a clear boundary of each object by using depth information and the gradient searching algorithm is able to preserve details. In this paper, we combine these two algorithms by using a weighting factor ${\alpha}$ to reflect the strong point of each algorithm effectively in the virtual view synthesis process. The experimental results show that the proposed algorithm performs much better than conventional algorithms.

Manipulation of Microfluid Width in a Microchannel Using Gas Boundary (미세 채널에서 가스 경계면을 이용한 미세 유체의 폭 조절)

  • Son, Sang-Uk;Lee, Seung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1190-1195
    • /
    • 2004
  • A novel manipulation of microfluid width in a microchannel was presented by controlling inflation of a gas boundary. The gas boundary was formed by heating water with a microheater in a semicircular shape from a chamber which was connected symmetrically to the microchannel. The formed gas boundary inflated perpendicularly to the flow direction and, consequently, the microfluid width was narrowed. The inflation and contraction were flexibly like a virtual wall and dependent on two factors: one is the flow velocity of the microfluid and the other is the pressure inside the gas boundary. Dimensions of the chamber and the microchannel width were determined empirically as same of $300\;{\mu}m$ for stable operation. The width of microfluid was manipulated manually with the microheater and could be maintained as up to $22\;{\mu}m$. The stable focusing began to be distorted when the flow velocity exceeded 17.8 mm/s.

A VIRTUAL BOUNDARY METHOD FOR SIMULATION OF FLOW OVER SWIMMING STRINGS

  • Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.66-69
    • /
    • 2006
  • In the present study, we propose a virtual boundary method for simulation of massive inextensible flexible strings immersed in viscous fluid flow. The fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A massive inextensible flexible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, inlcuding a hanging string which starts moving under gravity without ambient fluid, a string swimming within a uniform flow and a uniform flow over two side-by side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Preliminary results of a swimming elongated fishlike body will also be presented.

  • PDF

Real-Time Virtual-View Image Synthesis Algorithm Using Kinect Camera (키넥트 카메라를 이용한 실시간 가상 시점 영상 생성 기법)

  • Lee, Gyu-Cheol;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.409-419
    • /
    • 2013
  • Kinect released by Microsoft in November 2010 is a motion sensing camera in xbox360 and gives depth and color images. However, Kinect camera also generates holes and noise around object boundaries in the obtained images because it uses infrared pattern. Also, boundary flickering phenomenon occurs. Therefore, we propose a real-time virtual-view video synthesis algorithm which results in a high-quality virtual view by solving these problems. In the proposed algorithm, holes around the boundary are filled by using the joint bilateral filter. Color image is converted into intensity image and then flickering pixels are searched by analyzing the variation of intensity and depth images. Finally, boundary flickering phenomenon can be reduced by converting values of flickering pixels into the maximum pixel value of a previous depth image and virtual views are generated by applying 3D warping technique. Holes existing on regions that are not part of occlusion region are also filled with a center pixel value of the highest reliability block after the final block reliability is calculated by using a block based gradient searching algorithm with block reliability. The experimental results show that the proposed algorithm generated the virtual view image in real-time.

Virtual Reality Presentation for Nondestructive Evaluation of Rebar Corrosion in Concrete based on Inverse BEM

  • Kyung, Je-Woon;Yokota, Masaru;Leelalerkiet, V.;Ohtsu, Masayasu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

Scaled Boundary Finite Element Methods for Non-Homogeneous Half Plane (비동질 반무한 평면에서의 비례경계유한요소법)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.127-136
    • /
    • 2007
  • In this paper, the equations of the scaled boundary finite element method are derived for non-homogeneous half plane and analyzed numerically In the scaled boundary finite element method, partial differential equations are weaken in the circumferential direction by approximation scheme such as the finite element method, and the radial direction of equations remain in analytical form. The scaled boundary equations of non-homogeneous half plane, its elastic modulus varies as power function, are newly derived by the virtual work theory. It is shown that the governing equation of this problem is the Euler-Cauchy equation, therefore, the logarithm mode used in the half plane problem is not valid in this problem. Two numerical examples are analysed for the verification and the feasibility.

Numerical Analysis of Laminar Natural Convection Heat Transfer around Two Vertical Fins by a Spectral Finite Difference Method

  • Haehwan SONG;MOCHIMARU Yoshihiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.56-57
    • /
    • 2003
  • A numerical solution is presented for the natural convection heat transfer from two vertical fins using a spectral finite difference method. Virtual distant boundary conditions for two bodies that are compatible with plume behavior and with an overall continuity condition are introduced. A boundary-fitted coordinate system is formed. Streamlines, isotherms, mean Nusselt numbers and drag & lift coefficients are presented for a variety of dimensionless parameters such as a Grashof number and a Prandtl number at a steady-state. Extensive effectiveness of a spectral finite difference method was established.

  • PDF

Elasto-Plastic Contact Analysis for a Rigid Surface with an Arbitrary Shape in SPH (SPH에서 임의 형상의 강체면에 대한 탄소성 접촉 해석)

  • Seo, Song-Won;Lee, Jae-Hoon;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.450-455
    • /
    • 2004
  • There is few research about contact problem for a rigid surface with an arbitrary shape in SPH. The variational equation based on the virtual work principle is derived and its solution is obtained by the penalty method. It is proposed a new method that can determine the parameters for a penetration and a penetration rate used in the penalty method. The reproducing condition is adopted to correct the deficiency of kernel on the boundary. In order to calculate a penetration of particles, after checking boundary particles for deformable body boundary normal vectors were determined on the rigid surface. Numerical simulations for models which have rigid surface with an arbitrary shape were conducted to validate the proposed method in 2D. The results of those analysis represent that the contact algorithm proposed in this study works properly.

  • PDF

Virtual DressUp system by using image deformation method (이미지 변형 기법을 이용한 가상 드레스업 시스템)

  • Kim, Na-Ri;Yoon, Jong-Chul;Lee, In-Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • This paper introduces a virtual dress up system, according to user's input model and garment image. At first step, we deform the garment image by using skeleton structures and ARAP method. Next step, sampling the boundary points and find their matching vertices which are used for optimizing the boundary fitting. In 2D rendering of the dress up, they have some unrealistic results, so we reconstruct the garment mesh to the 3D mesh. Rendering from the reconstructed 3D mesh, we can get the final dress up result. We present that our system produce a visually plausible and well-fitted virtual dress up results.

  • PDF