• Title/Summary/Keyword: viral transmission

Search Result 140, Processing Time 0.03 seconds

Identification of Korean native cattle persistently infected with BVDV using Ear-notch method

  • Kim, Youngsik;Kim, Yongkwan;Lee, Sook-Young;Lee, Kyoung-Ki;Lee, Kyung-Hyun;Song, Jae-Chan;Oem, Jae-Ku
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.117-120
    • /
    • 2019
  • Bovine viral diarrhea Virus (BVDV) infections cause respiratory, gastrointestinal, and reproductive problems, such as infertility, abortion, stillbirth, and sickly offspring. Many countries have reduced the economic damage through the application of different control programmes, and some have successfully eradicated BVD. Detection and elimination of cattle persistently infected (PI) with BVDV is important for BVD eradication because PI cattle are a main source of BVD transmission. In this study, the prevalence of Korean native cattle persistently infected (PI) with BVDV was investigated and determined in 49 farms with 3,050 cattle. The all samples were collected by ear notch sampling. Korean native cattle with initial positives on antigen-ELISA (Ag-ELISA) were sampled again after 3~4 weeks and cattle with second positives in both Ag-ELISA and immunohistochemistry (IHC) were identified as PI cattle. Among the 49 farms, 14 (28.6%) farms had at least more than one PI cow and 21 (0.69%) of 3,050 cattle were determined as PI cattle. As a result of this work, it is suggested that national BVD eradication program is required to reduce economic losses by BVDV infection in Korean cattle industries.

Genomic epidemiology and surveillance of zoonotic viruses using targeted next-generation sequencing (표적화 차세대염기서열분석법을 이용한 인수공통 바이러스의 유전체 역학과 예찰)

  • Seonghyeon Lee;Seung-Hwan Baek;Shivani Rajoriya;Sara Puspareni;Won-Keun Kim
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.1
    • /
    • pp.93-106
    • /
    • 2023
  • Emerging and re-emerging zoonotic viruses become critical public health, economic, societal, and cultural burdens. The Coronavirus disease-19 (COVID-19) pandemic reveals needs for effective preparedness and responsiveness against the emergence of variants and the next virus outbreak. The targeted next-generation sequencing (NGS) significantly contributes to the acquisition of viral genome sequences directly from clinical specimens. Using this advanced NGS technology, the genomic epidemiology and surveillance play a critical role in identifying of infectious source and origin, tracking of transmission chains and virus evolution, and characterizing the virulence and developing of vaccines during the outbreak. In this review, we highlight the platforms and preparation of targeted NGS for the viral genomics. We also demonstrate the application of this strategy to take advantage of the responsiveness and prevention of emerging zoonotic viruses. This article provides broad and deep insights into the preparedness and responsiveness for the next zoonotic virus outbreak.

Genealogical Diversity of Endogenous Retrovirus in the Jawless Fish Genome

  • Song Jing;Wei Jie;Ma Yongping;Sun Yan;Li Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1412-1419
    • /
    • 2023
  • Retroviral integration into ancient vertebrate genomes left traces that can shed light on the early history of viruses. In this study, we explored the early evolution of retroviruses by isolating nine Spuma endogenous retroviruses (ERVs) and one Epsilon ERV from the genomes of Agnatha and Chondrichthyes. Phylogenetic analysis of protein sequences revealed a striking pattern of co-evolution between jawless fish ERV and their host, while shark ERV underwent ancient cross-class viral transmission with jawless fish, ray-finned fish, and amphibians. Nucleotide sequence analysis showed that jawless fish ERV emerged in the Palaeozoic period, relatively later than ray-finned fish ERV. Moreover, codon analysis suggested that the jawless fish ERV employed an infection strategy that mimics the host codon. The genealogical diversity of ERVs in the jawless fish genome highlights the importance of studying different viral species. Overall, our findings provide valuable insights into the evolution of retroviruses and their interactions with their hosts.

Risk factors of African swine fever virus in suspected infected pigs in smallholder farming systems in South-Kivu province, Democratic Republic of Congo

  • Bisimwa, Patrick N.;Dione, Michel;Basengere, Bisimwa;Mushagalusa, Ciza Arsene;Steinaa, Lucilla;Ongus, Juliette
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.35.1-35.13
    • /
    • 2021
  • Background: African swine fever (ASF) is an infectious viral disease of domestic pigs that presents as a hemorrhagic fever, and for which no effective vaccine is available. The disease has a serious negative social and economic impact on pig keepers. There is limited information on the potential risk factors responsible for the spread of ASF in South Kivu. Objective: The aim of this study was to determine the potential risk factors associated with ASF infection in suspected ASF virus (ASFV)-infected pigs. Methods: We sampled whole blood from 391 pigs. Additionally, 300 pig farmers were interviewed using a structured questionnaire. Viral DNA was detected by using the real-time polymerase chain reaction technique. Results: The majority of pigs sampled, 78% (95% confidence interval [CI], 74.4-82.6), were of local breeds. Over half, 60.4% (95% CI, 55.5-65.2), were female, and most of them, 90.5% (95% CI, 87.6-93.4), were adult pigs (> 1 year old). Viral DNA was detected in 72 of the 391 sampled pigs, indicating an overall infection rate of 18.4% (95% CI, 14.5-22.4). Multivariable logistic regression analysis revealed several risk factors positively associated with ASFV infection: feeding with swill in pen (odds ratio [OR], 3.8; 95% CI, 2.12-6.77); mixed ages of pigs in the same pen (OR, 3.3; 95% CI, 1.99-5.57); introduction of new animals to the farm (OR, 5.4; 95% CI, 1.91-15.28). The risk factors that were negatively (protective) correlated with ASFV positivity were the presence of male animals and the use of an in-pen breeding system. Conclusion: Local pig farmers should be encouraged to adopt proper husbandry and feeding practices in order to increase the number of ASF-free farms.

Combination of multiplex reverse transcription recombinase polymerase amplification assay and capillary electrophoresis provides high sensitive and high-throughput simultaneous detection of avian influenza virus subtypes

  • Tsai, Shou-Kuan;Chen, Chen-Chih;Lin, Han-Jia;Lin, Han-You;Chen, Ting-Tzu;Wang, Lih-Chiann
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The pandemic of avian influenza viruses (AIVs) in Asia has caused enormous economic loss in poultry industry and human health threat, especially clade 2.3.4.4 H5 and H7 subtypes in recent years. The endemic chicken H6 virus in Taiwan has also brought about human and dog infections. Since wild waterfowls is the major AIV reservoir, it is important to monitor the diversified subtypes in wildfowl flocks in early stage to prevent viral reassortment and transmission. To develop a more efficient and sensitive approach is a key issue in epidemic control. In this study, we integrate multiplex reverse transcription recombinase polymerase amplification (RT-RPA) and capillary electrophoresis (CE) for high-throughput detection and differentiation of AIVs in wild waterfowls in Taiwan. Four viral genes were detected simultaneously, including nucleoprotein (NP) gene of all AIVs, hemagglutinin (HA) gene of clade 2.3.4.4 H5, H6 and H7 subtypes. The detection limit of the developed detection system could achieve as low as one copy number for each of the four viral gene targets. Sixty wild waterfowl field samples were tested and all of the four gene signals were unambiguously identified within 6 h, including the initial sample processing and the final CE data analysis. The results indicated that multiplex RT-RPA combined with CE was an excellent alternative for instant simultaneous AIV detection and subtype differentiation. The high efficiency and sensitivity of the proposed method could greatly assist in wild bird monitoring and epidemic control of poultry.

The safety of live VHSV immersion vaccine at a temperature-controlled culture condition in juvenile olive flounder, Paralichthys olivaceus

  • Yo-Seb, Jang;Soo-Jin, Kim;Su-Young, Yoon;Rahul, Krishnan;Myung-Joo, Oh
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.225-230
    • /
    • 2022
  • Viral hemorrhagic septicemia (VHS) is one of the most serious viral diseases affecting farmed olive flounder (Paralichthys olivaceus) in Asian countries. VHS, caused by viral hemorrhagic septicemia virus (VHSV), occurs in over 80 different cultured and wild fish species worldwide. Our previous study demonstrated that VHSV infection can be restricted by adjusting the water temperature to over 17℃ from the host optima. We confirmed that the effective VHSV immersion vaccine treatment was a tissue culture infection dose (TCID) of 105.5 TCID50/mL at 17℃. However, the safety of live VHSV immersion vaccines remains unclear. The objectives of this study were to 1) demonstrate the safety of the live VHSV immersion vaccine under co-habitant conditions and 2) estimate the pathogenicity of VHSV in live VHSV-vaccinated flounder at 10℃. No mortality was observed in olive flounder treated with the live VHSV immersion vaccine, and the vaccinated flounder challenged with VHSV did not transfer VHSV to naïve fish at 10℃ through cohabitation. VHSV titration was below the detection limit (< 1.3 log TCID50/mL) in live VHSV immersion vaccine-treated flounder challenged with VHSV at 10℃. This study demonstrated that flounder treated with the live VHSV immersion vaccine were resistant to VHSV infection, and the live vaccine was also safe for naïve fish even at a water temperature known to be VHS infectious.

Twindemic Threats of Weeds Coinfected with Tomato Yellow Leaf Curl Virus and Tomato Spotted Wilt Virus as Viral Reservoirs in Tomato Greenhouses

  • Nattanong Bupi;Thuy Thi Bich Vo;Muhammad Amir Qureshi;Marjia Tabassum;Hyo-jin Im;Young-Jae Chung;Jae-Gee Ryu;Chang-seok Kim;Sukchan Lee
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.310-321
    • /
    • 2024
  • Tomato yellow leaf curl virus (TYLCV) and tomato spotted wilt virus (TSWV) are well-known examples of the begomovirus and orthotospovirus genera, respectively. These viruses cause significant economic damage to tomato crops worldwide. Weeds play an important role in the ongoing presence and spread of several plant viruses, such as TYLCV and TSWV, and are recognized as reservoirs for these infections. This work applies a comprehensive approach, encompassing field surveys and molecular techniques, to acquire an in-depth understanding of the interactions between viruses and their weed hosts. A total of 60 tomato samples exhibiting typical symptoms of TYLCV and TSWV were collected from a tomato greenhouse farm in Nonsan, South Korea. In addition, 130 samples of 16 different weed species in the immediate surroundings of the greenhouse were collected for viral detection. PCR and reverse transcription-PCR methodologies and specific primers for TYLCV and TSWV were used, which showed that 15 tomato samples were coinfected by both viruses. Interestingly, both viruses were also detected in perennial weeds, such as Rumex crispus, which highlights their function as viral reservoirs. Our study provides significant insights into the co-occurrence of TYLCV and TSWV in weed reservoirs, and their subsequent transmission under tomato greenhouse conditions. This project builds long-term strategies for integrated pest management to prevent and manage simultaneous virus outbreaks, known as twindemics, in agricultural systems.

Disease monitoring of wild marine fish and crustacea caught from inshore and offshore Korea in 2018 (2018년 국내 연근해 수산생물의 전염병 모니터링)

  • Hwang, Seong Don;Lee, Da-Won;Chun, Won Joo;Jeon, Hae-Ryeon;Kim, Dong Jun;Hwang, Jee-Youn;Seo, Jung-Soo;Kwon, Mun-Gyoung;Ji, Hwan-Sung;Kim, Jung Nyun;Jee, Bo-Young
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.474-482
    • /
    • 2019
  • Disease monitoring in wild aquatic animals is necessary to obtain information about disease occurrence, disease agents, and the transmission of diseases between wild and cultured species. In this study, we monitored viral diseases in wild marine fish and crustacea caught by trawl in Korea in April and October 2018. We monitored the viral diseases in 977 fish from 39 different species and 287 crustacea from 14 different species. In fish, we collected kidney and spleen to detect viral hemorrhagic septicemia virus (VHSV), red sea bream iridovirus (RSIV), marine birnavirus (MABV), hirame rhabdovirus (HRV), and lymphocystis disease virus (LCDV). In crustacea, we monitored white spot syndrome virus (WSSV), infectious hypodermal and hematopoietic necrosis virus (IHHNV), taura syndrome virus (TSV), infectious myonecrosis virus (IMNV), yellowhead disease virus (YHDV), and white tail disease virus (WTDV) using pleopods, pereiopods, gills, muscle, and hepatopancreases. Although none of the viral diseases tested in this study were detected in the samples, these results will help disease control between aquaculture species and wild aquatic animals.

Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus

  • Kim, Nam-Gyu;Seo, Eun-Young;Han, Sang-Hyuk;Gong, Jun-Su;Park, Cheol-Nam;Park, Ho-Seop;Domier, Leslie L;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • Efforts to control viral diseases in crop production include several types of physical or chemical treatments; antiviral extracts of a number of plants have also been examined to inhibit plant viral infection. However, treatments utilizing naturally selected microorganisms with activity against plant viruses are poorly documented. Here we report isolation of a soil inhabiting bacterium, Pseudomonas oleovorans strain KBPF-004 (developmental code KNF2016) which showed antiviral activity against mechanical transmission of tobamoviruses. Antiviral activity was also evaluated in seed transmission of two tobamoviruses, Pepper mild mottle virus (PMMoV) and Cucumber green mottle mosaic virus (CGMMV), by treatment of seed collected from infected pepper and watermelon, respectively. Pepper and watermelon seeds were treated with culture supernatant of P. oleovorans strain KBPF-004 or control strain ATCC 8062 before planting. Seeds germinated after treatment with water or ATCC 8062 yielded about 60% CGMMV or PMMoV positive plants, whereas < 20% of KBPF-004-treated seeds were virus-infected, a significantly reduced seed transmission rate. Furthermore, supernatant of P. oleovorans strain KBPF-004 remodeled aggregation of PMMoV 126 kDa protein and subcellular localization of movement protein in Nicotiana benthamiana, diminishing aggregation of the 126 kDa protein and essentially abolishing association of the movement protein with the microtubule network. In leaves agroinfiltrated with constructs expressing the coat protein (CP) of either PMMoV or CGMMV, less full-size CP was detected in the presence of supernatant of P. oleovorans strain KBPF-004. These changes may contribute to the antiviral effects of P. oleovorans strain KBPF-004.

Super-intensive Culture of Whiteleg Shrimp, Litopenaeus vannamei (Boone, 1931), in HDPE-lined Ponds with no Water Exchange (사육수 비교환방식을 이용한 포장 사육지에서의 흰다리새우, Litopenaeus vannamei (Boone, 1931)의 초고밀도양식)

  • Cho, Yeong-Rok;Kim, Bong-Rae;Jang, In-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.331-339
    • /
    • 2010
  • Shrimp farming is the most important mariculture industry on the west coast of South Korea. However, it has suffered from mass mortality due to viral disease outbreaks and coastal pollution due to water discharge. This study developed an intensive shrimp culture method for outdoor ponds, without water exchange, which minimizes the chance of viral transmission from the environment, reduces coastal pollution by water discharge and enhances shrimp production. A culture trial was conducted in two high-density polyethylene (HDPE)-lined ponds with a $550\;m^2$ surface area. The ponds were stocked with postlarvae of Litopenaeus vannamei, the major farmed shrimp species in Korea, on July 10, 2007, and cultured for 90 days with no water exchange. The stocking density of the postlarvae (B.W. 0.0015 g) was $272\;ind./m^2$, which is eight times higher than in traditional pond culture in Korea. At harvest, the total production of ponds 1 and 2 was 1,362kg ($2.48\;kg/m^2$) and 1,282 kg ($2.33\;kg/m^2$), respectively. This is 20~22 times higher than the mean farmed shrimp production ($0.112\;kg/m^2$) in Korea and about eight times higher than in traditional ponds with a good harvest. Although there was no water exchange throughout the culture period, the mean concentrations of unionized ammonia and nitrite-nitrogen were as low as 0.038 and 6.0 mg/L, respectively. The feed conversion rate (FCR) was 1.38, which is 20~45% lower than that of traditional pond cultures. The high efficiency of the diet in this study is thought to be due to a well-managed feeding strategy and well-developed bioflocs used as diet additions for the shrimp. The final body weight of the shrimp at harvest was low (12.2~12.5 g), compared with that of traditional pond culture. This may have resulted from the combination of a short culture period, high density of shrimp, and low temperature. This study suggests that a super-intensive shrimp pond culture method using biofloc technology with no water exchange can minimize viral transmission via water exchange, reduce coastal pollution, and enhance shrimp production.