Moving objects in video data are main elements for video analysis and retrieval. In this paper, we propose a new algorithm for tracking and segmenting moving objects in color image sequences that include complex camera motion such as zoom, pan and rotating. The Proposed algorithm is based on the Mean-shift color segmentation and stochastic region matching method. For segmenting moving objects, each sequence is divided into a set of similar color regions using Mean-shift color segmentation algorithm. Each segmented region is matched to the corresponding region in the subsequent frame. The motion vector of each matched region is then estimated and these motion vectors are summed to estimate global motion. Once motion vectors are estimated for all frame of video sequences, independently moving regions can be segmented by comparing their trajectories with that of global motion. Finally, segmented regions are merged into the independently moving object by comparing the similarities of trajectories, positions and emerging period. The experimental results show that the proposed algorithm is capable of segmenting independently moving objects in the video sequences including complex camera motion.
IEIE Transactions on Smart Processing and Computing
/
제4권2호
/
pp.110-114
/
2015
This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.
Video data is usually stored in a compressed format in order to reduce the storage space. For efficient browsing, searching, and retrieval of compressed video sequences, size-reduced images (or DC images which are formed with block DC coefficients) are generally preferred to avoid unnecessary computational complexity. In this paper, we propose a DC image extraction scheme appropriate for scene analysis and efficient browsing of compressed video sequences. The proposed algorithm utilizes predicted low frequency AC coefficients to achieve better approximation and to reduce the error drift. Due to the AC prediction based on a quadratic surface model, the proposed scheme requires no additional memory compared with the previous zero-order or first-order approximation scheme. Simulation results show that the proposed scheme achieves better subjective and objective quality with minor additional operations.
정형화 배열이란 연속적이거나 연속적이지 않은 하나의 덩어리로 인식되는 어휘 덩어리이다. 정형화 배열은 언어 발달의 핵심적인 역할을 하는 것으로 정형화 배열의 습득 여부가 언어 발달의 성패를 좌우한다. 본 연구에서는 유학생들의 정형화 배열 학습방안으로 소리 내어 읽기 활동을 제안한다. 서울 소재 대학의 교양 영어 수업을 듣는 유학생 41명을 대상으로 소리 내어 읽기 활동 중심의 수업을 진행하였다. 15주간 동영상 수업과 줌 실시간 수업을 병행하여 진행하였고, 교재는 애니메이션 겨울왕국을 이용하였다. 동영상 수업에서는 교사가 쉬운 한국어로 영화 대본을 해석하였고 정형화 배열을 소리 내어 읽기를 하였다. 학생들은 과제로 정형화 배열이 포함된 문장을 소리 내어 읽고 녹음하여 제출하였다. 실시간 수업에서는 학생들이 동영상 수업에서 학습한 정형화 배열을 소리 내어 읽기 활동을 하였다. 사전 평가 대비 사후 평가에서 정형화 배열 해석하기와 쓰기에서 유의미한 상승이 있었다. 설문에서는 학생들은 수업에 대한 정의적 영역에서 긍정적인 견해를 나타냈다.
도시화로 인한 사회기반시설의 확충으로 인해 각종 시설물의 관리에 새로운 차원의 관리기술이 요구되고 있다. 90년대부터 GIS는 시설물관리와 계획에 효과적인 기술로 평가되어 정부 및 지자체에서 중장기 계획을 수립하여 시설물 관리시스템을 구축하고 있으며, 관련분야기술을 발전시키기 위한 연구가 지속적으로 이뤄지고 있다. 이런 측면에서 GIS구축 시 수치지도나 영상을 기본도로 사용하는 단점을 개선하기 위해 동영상자료를 이용한 정보시스템구축에 관심이 높아지고 있다. 동영상자료를 이용할 경우 실 세계적인 정보를 사용자에게 제공할 수 있어서 GIS의 사용효과를 더욱 향상시킬 수 있는 장점이 있다. 본 연구에서는 비행선에서 촬영된 비디오동영상과 GPS 위치자료를 이용하여 비디오영상을 수치지도와 연계시키고, 동영상에 나타나는 시설물에 대한 객체추적 및 속성자료 연결을 통해 시설물을 효과적으로 관리할 수 있는 시설물관리시스템을 프로토 타입으로 개발하였다. 제시된 시스템의 기능을 통하여 동영상자료를 이용한 시설물관리시스템의 구축 가능성과 활용성을 제시하였다.
Ultra-High Definition Television (U-HDTV) 는 차세대 TV로 불리는 실감 TV의 가장 유망한 요소 기술로 주목받고 있으며 이를 효과적으로 압축하기 위한 병렬 비디오 부호화 기술 개발의 필요성이 증대되고 있다. 기존의 병렬 부호화 기술은 영상을 공간적으로 분할하고 분할비디오 (sub-sequence)를 독립적으로 부호화 하는 방식을 사용하였다. 본 논문에서는 분할비디오간의 높은 상호상관 (cross-correlation)을 이용하여 부호화 효율을 향상하는 파이프라인 (pipeline) 구조의 병렬 부 복호화기를 제안한다. 실험결과를 통하여 제안하는 기술이 압축 효율을 향상시키며 균일한 화질의 분할비디오를 생성하는 것을 확인한다.
디지털 미디어의 증가로 비디오 시퀀스를 효율적으로 정합하기 위한 다양한 알고리즘이 제안되었다 기존의 비디오 검색 알고리즘에서는 주로 프레임 단위의 질의에 관한 검색 알고리즘이 연구되었으나 비디오 시퀀스 단위의 질의에 관한 정합 알고리즘 연구는 미진하였다. 본 논문에서는 비디오 시퀀스 질의에 관한 효율적인 비디오 색인과 검색 알고리즘을 제안한다. 시퀀스 정합의 정확도와 성능 향상을 위하여 연속되는 프레임의 히스토그램간의 유사도 함수로 커쉬함수를 사용하였으며 기존의 방법에 비해 높은 성능을 나타내었다. 비디오 샷들로부터 추출된 키프레임들은 샷묶음 뿐만 아니라 비디오 시퀀스 정합이나 브라우징에도 사용되며 여기서 키프레임은 이전 프레임들과 중요한 차이를 보이는 프레임을 나타낸다. 몇가지 키프레임 알고리즘이 제안되었고 적절한 유사도 측정을 통해 샷경계 검출과 유사한 방법으로 키프레임 추출이 가능하다. 본 논문에서는 누적된 커쉬함수를 사용하여 효과적으로 키프레임을 추출하는 알고리즘을 제안하고 기존의 방법들과의 성능을 비교한다. 비디오 시퀀스 정합은 키프레임간의 유사도 측정에 의해 수행될 수 있다 본 논문에서는 추출된 키프레임의 정합 효율을 향상 시키기 위하여 커쉬함수와 하우스도르프 거리를 사용하였다. 몇가지 실험 영상을 이용한 실험결과 제안한 방법은 기존의 방법에 비해적은 계산량으로 높은 정합 성능을 보였다.
In this paper, we propose a method to track the movement of camera from the video sequences. This method is useful for video analysis and can be applied as pre-processing step in some application such as video stabilizer and marker-less augmented reality. First, we extract the features in each frame using corner point detection. The features in current frame are then compared with the features in the adjacent frames to calculate the optical flow which represents the relative movement of the camera. The optical flow is then analyzed to obtain camera movement parameter. The final step is camera movement estimation and correction to increase the accuracy. The method performance is verified by generating a 3D map of camera movement and embedding 3D object to the video. The demonstrated examples in this paper show that this method has a high accuracy and rarely produce any jitter.
비디오 스트림은 다차원 공간에서 데이터 포인트의 시퀀스로 표현될 수 있다. 본 논문에서는 시퀀스 내의 데이터 포인트들의 값들의 근사치에 대한 정보와 시퀀스 내의 포인트들의 방향성에 대한 정보를 내포하고 있는 트랜드 벡터(trend vector)에 대한 소개와 이 벡터를 이용하여 데이터 시퀀스를 위한 유사 패턴 검색 기법을 제안한다. 시퀀스는 복수 개의 세그먼트로 분할되며 각 세그먼트는 트랜드 벡터로 표현된다. 질의처리는 시퀀스 내의 각각의 포인트들에 대하여 수행되는 대신, 트랜드 벡터들에 대하여 처리된다. 제안한 기법은 이 벡터를 사용하여 질의와 무관한 데이터 시퀀스들을 데이터베이스로부터 여과하고 질의 시퀀스와 유사한 시퀀스들을 검색하도록 설계되었다. 제안한 기법을 검증하기 위하여 비디오 스트림과 가상으로 생성된 데이터에 관하여 실험을 수행하였으며, 실험 결과 제안한 기법의 정밀도(precision)는 기존의 방법에 비하여 2.1배까지 향상되었으며 처리시간은 45%까지 감소되었음을 보여주고 있다.
본 논문은 도로상에 설치한 고정 카메라로부터 획득된 비디오 영상으로부터 이동물체를 검출하는 방법을 제안한다. 제안된 방법은 배경과 입력 비디오 프레임에서 가우시안 피라미드를 사용한 배경 차영상 기법에 기반하며, 입력 비디오 프레임과 배경영상의 오정합으로 발생하는 오검출을 줄이는데 화소기반 방법에 비해 효과적이다. 차영상에서 임계값을 효과적으로 결정하기위하여 각 프레임에서 Otsu의 방법으로 계산된 임계값에 스칼라 칼만필터를 적용하여 필터링하였다. 실험 결과 도로 비디오 영상에서 움직이는 물체를 효과적으로 검출함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.