• 제목/요약/키워드: video monitoring system

검색결과 327건 처리시간 0.027초

Trend of Technology in Video Surveillance System

  • Song, Jaemin;Park, Arum;Lee, Sae Bom
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.57-64
    • /
    • 2020
  • 영상보안은 카메라, 전송장치, 저장 및 재생장치 등으로 구성되며 범죄예방, 재난 감시 등에 사용되고 있다. 최근 매우 다양한 분야로 파급되고 있으며, 자동으로 사람 및 사물의 특징적인 객체를 인식하거나 추적할 수 있는 지능형 영상보안 시스템으로 발전하고 있다. 본 연구는 홈과 공공부문, 민간부문으로 구분하여 최신 기술을 적용한 영상보안 서비스 사례들을 조사하고 비즈니스 관점에서 어떠한 이점을 가져다주는지 조사·연구하고자 하였다. 본 연구에서 소개한 사례들을 살펴봄으로써 뛰어난 CCTV와의 호환, 여러 개의 영상감시, CCTV 촬영 화면 모션 감지, 자동 분석을 통한 알람 제공 등 영상보안 서비스가 지능적으로 발전하고 있다는 것을 확인할 수 있었다.

Real-Time Surveillance of People on an Embedded DSP-Platform

  • Qiao, Qifeng;Peng, Yu;Zhang, Dali
    • Journal of Ubiquitous Convergence Technology
    • /
    • 제1권1호
    • /
    • pp.3-8
    • /
    • 2007
  • This paper presents a set of techniques used in a real-time visual surveillance system. The system is implemented on a low-cost embedded DSP platform that is designed to work with stationary video sources. It consists of detection, a tracking and a classification module. The detector uses a statistical method to establish the background model and extract the foreground pixels. These pixels are grouped into blobs which are classified into single person, people in a group and other objects by the dynamic periodicity analysis. The tracking module uses mean shift algorithm to locate the target position. The system aims to control the human density in the surveilled scene and detect what happens abnormally. The major advantage of this system is the real-time capability and it only requires a video stream without other additional sensors. We evaluate the system in the real application, for example monitoring the subway entrance and the building hall, and the results prove the system's superior performance.

  • PDF

고속 영역기반 컨볼루션 신경망을 이용한 개별 돼지의 탐지 (Individual Pig Detection using Fast Region-based Convolution Neural Network)

  • 최장민;이종욱;정용화;박대희
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.216-224
    • /
    • 2017
  • Abnormal situation caused by aggressive behavior of pigs adversely affects the growth of pigs, and comes with an economic loss in intensive pigsties. Therefore, IT-based video surveillance system is needed to monitor the abnormal situations in pigsty continuously in order to minimize the economic demage. Recently, some advances have been made in pig monitoring; however, detecting each pig is still challenging problem. In this paper, we propose a new color image-based monitoring system for the detection of the individual pig using a fast region-based convolution neural network with consideration of detecting touching pigs in a crowed pigsty. The experimental results with the color images obtained from a pig farm located in Sejong city illustrate the efficiency of the proposed method.

Mean-Shift Blob Clustering and Tracking for Traffic Monitoring System

  • Choi, Jae-Young;Yang, Young-Kyu
    • 대한원격탐사학회지
    • /
    • 제24권3호
    • /
    • pp.235-243
    • /
    • 2008
  • Object tracking is a common vision task to detect and trace objects between consecutive frames. It is also important for a variety of applications such as surveillance, video based traffic monitoring system, and so on. An efficient moving vehicle clustering and tracking algorithm suitable for traffic monitoring system is proposed in this paper. First, automatic background extraction method is used to get a reliable background as a reference. The moving blob(object) is then separated from the background by mean shift method. Second, the scale invariant feature based method extracts the salient features from the clustered foreground blob. It is robust to change the illumination, scale, and affine shape. The simulation results on various road situations demonstrate good performance achieved by proposed method.

디지털 트윈을 활용한 실시간 모니터링 및 원격제어 시스템의 테스트베드 구현 (Implementation of Real-time Monitoring and Remote Control System Testbed based on Digital Twin)

  • 윤정은;김원석
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.325-334
    • /
    • 2022
  • Digital twin has the advantages of quality improvement and cost reduction, so it is widely applied to various industries. In this paper, a method to implement the major technologies of digital twin easily and quickly is presented. These include data management and relay servers, real-time monitoring applications including remote control interfaces, and direct connection protocols for video streaming. In addition, an algorithm for controlling a two-wheeled vehicle with a 2D interface is also proposed. The implemented system performs near real-time synchronization between the real environment and the virtual space. The delay time that occurs in remote control of the vehicle in the real environment was compared with the results of applying the proposed delay time reduction method. In addition, in the case of 2D interface-based control, an algorithm that can guarantee the user experience was implemented and applied to the actual environment and verified through experiments.

영상정보의 저장 공간 관리를 위한 동적/정적 객체 분리 및 시각암호화 메커니즘 (Dynamic / Static Object Segmentation and Visual Encryption Mechanism for Storage Space Management of Image Information)

  • 김진수;박남제
    • 한국멀티미디어학회논문지
    • /
    • 제22권10호
    • /
    • pp.1199-1207
    • /
    • 2019
  • Video surveillance data, which is used for preemptive or post-emptive action against any event or accident, is required for monitoring the location, but is reducing the capacity of the image data by removing intervals for cost reduction and system persistence. Such a video surveillance system is fixed in a certain position and monitors the area only within a limited angle, or monitors only the fixed area without changing the angle. At this time, the video surveillance system that is monitored only within a limited angle shows that the variation object such as the floating population shows different status in the image, and the background of the image maintains a generally constant appearance. The static objects in the image do not need to be stored in all the images, unlike the dynamic objects that must be continuously shot, and occupy a storage space other than the necessary ones. In this paper, we propose a mechanism to analyze the image, store only the small size image for the fixed background, and store it as image data only for variable objects.

Feasibility of the Depth Camera-based Physical Health Monitoring System for Elderly Living Alone

  • Sungbae, Jo
    • Physical Therapy Rehabilitation Science
    • /
    • 제13권1호
    • /
    • pp.106-112
    • /
    • 2024
  • Objective: This study aimed to evaluate the validity of a depth camera-based system for monitoring physical function, assessing its feasibility for accurately monitoring activities of daily living. Design: A cross-sectional study. Methods: Twenty-three participants were enlisted to perform fifteen activities of daily living within a living laboratory designed to simulate a home environment. Activities were monitored using a depth camera system capable of classifying actions into standing, sitting, and lying down, with a conventional video camera employed for activity recording. The duration of each activity, as measured by the system, was compared to direct observations made by a physical therapist which were analyzed using a motion analysis software. The association between these two measurement approaches was assessed through correlation analysis, coefficient of determination, intraclass correlation coefficient (ICC), and Bland-Altman plots. Results: Our findings indicated that standing activities exhibited the highest correlation (r=0.847) between the system measurements and physical therapist observations, followed by sitting (r=0.817) and lying down (r=0.734), which demonstrated lower correlations. However, the ICC and Bland-Altman plots revealed notable variances between the two measurement methods, particularly for activities involving lying down. Conclusions: In this study, the depth camera-based physical monitoring system showed promise feasibility in distinguishing standing, sitting, and lying down activities at home environments. However, the current study also underlined some necessities of enhancements in capturing lying down activities.

영상처리기법을 이용한 구조물 동특성 분석 시스템 프로토타입 개발 (Development of Structure Dynamic Characteristics Analysis System Prototype using Image Processing Technique)

  • 조병완;이윤성;김정훈;김도근;윤광원
    • 한국콘텐츠학회논문지
    • /
    • 제16권3호
    • /
    • pp.11-21
    • /
    • 2016
  • 최근 건축물과 교량 등 사회기반시설물들의 노후화로 인해 변위센서, 가속도센서 등 첨단 기술을 이용한 구조물 안전관리 기법이 중요한 이슈로 부각되고 있다. 일반적으로 구조물의 안전관리를 위한 구조 건전성 모니터링 기술은 IT와 계측센서 기반으로 이러한 시스템을 구축하기 위해서는 많은 비용이 소요된다. 본 논문에서는 기존 계측센서 기반의 구조 건전성 모니터링 시스템에 비해 보다 경제적이고 효과적인 방법으로 구조물의 변위와 고유진동수를 추정하여 손상도를 평가하는 영상 기반의 구조물 동특성 분석 시스템을 개발하였다. 본 논문에서 개발한 시스템은 디지털 카메라와 같은 영상장치를 이용하여 구조물의 영상을 촬영하고, 영상처리를 위해 주로 사용되고 있는 정규상호상관기법인 NCC연산을 통해 변위와 고유 진동수를 분석하고, 구조물의 손상전후의 주파수응답비를 비교분석하여 손상도를 판별하여 문제가 발생 시 관리자에게 경보하는 기능을 지원한다. 본 시스템은 기존의 구조물에 부착하거나 고정해서 사용하는 계측 센서에 비해 설치 및 이동이 간편하고, 시스템이 단순하여 경제적이며 활용성이 높은 장점이 있다.

지능형 예측감시 시스템을 위한 보안 프레임워크 (Security Framework for Intelligent Predictive Surveillance Systems)

  • 박정훈;박남제
    • 한국융합학회논문지
    • /
    • 제11권3호
    • /
    • pp.77-83
    • /
    • 2020
  • 최근 지능형 예측감시 시스템이 등장하고 있다. 지능형 예측감시 시스템의 추론을 위해서는 현재 및 과거의 데이터가 필요하며, 이러한 데이터의 분석을 통하여 곧 발생할 상황에 대한 예측을 가능하게 한다. 그러나, 이러한 과정에서 영상 객체의 개인정보를 취급하게 될 소지가 높으므로, 개인정보보호를 위해서는 보안에 대한 고려가 필수적이다. 특히, 개인의 생활패턴, 주요 이동 경로 등에 대한 정보가 해킹을 통하여 공개적으로 노출된다면 프라이버시 측면에서 문제가 될 것이다. 기존의 영상감시 프레임워크는 개인정보보호 측면에서 한계점이 있으며, 특히 개인정보보호에 취약한 측면이 있다. 본 논문에서는 개인정보보호를 고려한 지능형 예측감시 시스템을 위한 보안 프레임워크를 제안하였다. 제안한 방법에서는 단말, 전송, 감시, 모니터링 계층으로 구분하여 단위별 세부 구성요소를 명시하였으며, 특히 객체 단위별 세부 접근제어와 비식별화를 지원하여 영상감시 과정에서의 능동형 개인정보보호가 가능하다. 또한, 데이터 전송시 보안 기능과 RBAC 제공을 통한 접근제어의 장점을 갖는다.

A Mask Wearing Detection System Based on Deep Learning

  • Yang, Shilong;Xu, Huanhuan;Yang, Zi-Yuan;Wang, Changkun
    • Journal of Multimedia Information System
    • /
    • 제8권3호
    • /
    • pp.159-166
    • /
    • 2021
  • COVID-19 has dramatically changed people's daily life. Wearing masks is considered as a simple but effective way to defend the spread of the epidemic. Hence, a real-time and accurate mask wearing detection system is important. In this paper, a deep learning-based mask wearing detection system is developed to help people defend against the terrible epidemic. The system consists of three important functions, which are image detection, video detection and real-time detection. To keep a high detection rate, a deep learning-based method is adopted to detect masks. Unfortunately, according to the suddenness of the epidemic, the mask wearing dataset is scarce, so a mask wearing dataset is collected in this paper. Besides, to reduce the computational cost and runtime, a simple online and real-time tracking method is adopted to achieve video detection and monitoring. Furthermore, a function is implemented to call the camera to real-time achieve mask wearing detection. The sufficient results have shown that the developed system can perform well in the mask wearing detection task. The precision, recall, mAP and F1 can achieve 86.6%, 96.7%, 96.2% and 91.4%, respectively.