• Title/Summary/Keyword: vibrational durability

Search Result 7, Processing Time 0.019 seconds

A Convergence Study through Durability Analysis due to the Number of Automotive Seat Frame Supports (자동차 시트 프레임 지지대 개수에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.155-160
    • /
    • 2018
  • Automotive seat is a part to supply the convenience and safety of driver at driving. Recently, the seat has the role to protect driver from the outside impact or vibration and give the convenience except such a usage as chair. The design on structural function of the seat frame is important like the impact safety and durability. In this study, the seat is designed by adding one hollow rod to the part of seat back frame in order to enhance the structural safety and durability. This study was carried out by using CATIA and ANSYS as the design and analysis programs. As this study result through the structural and vibrational analyses, model 4 was seen to have the durability more superior than the other models. By utilizing this result, it is thought to be the useful material at designing the automotive seat frame with durability. It is possible to be grafted onto the convergence technique at the automotive seat frame and show the esthetic sense.

A Study on the Vibration Reduction of Pipe Line in the Air Conditioner for Railway Vehicles (철도차량용 냉방기 배관진동 저감 연구)

  • Jung, Yong-Ho;Koo, Jeong-Seo;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.574-579
    • /
    • 2011
  • In this study, we suggested a design modification method to reduce the vibration of an air conditioner for railway vehicles and increase the durability of its pipe lines. Through experimental vibrational mode analyses and structural modifications on the air conditioning system, vibration reduction scheme was suggested and evaluated its effectiveness by empirical modal analysis. The derived design idea was applied to a real air conditioning system and the expected improvement was obtained.

  • PDF

Applied Cases and Application Technologies of Ultrasonic Nanocrystalline Surface Modification and Accelerated Fatigue Life Evaluation Using Ultrasonic Elastic Vibrational Energy (초음파탄성진동에너지를 이용한 표면개질처리 및 가속피로수명평가 기술의 적용사례 및 응용기술)

  • Jo, In-Sik;Jo, In-Ho;Oh, Joo-Yeon;Lee, Chang-Soon;Pyoun, Young-Sik;Park, In-Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.115-121
    • /
    • 2013
  • It is greatly expected that the technologies of durability enhancement and evaluation for the core structures of plant facilities, marine plant and bridge constructures will be greatly expanded in the plant industry fields. In this study, the actively ongoing applied cases were tried to be analyzed in the present domestic industry fields through the Ultrasonic Nanocrystalline Surface Modification (UNSM) and Ultrasonic Fatigue Test (UFT) technologies using ultrasonic elastic vibrational energy, and the new application technology to improve the durability of plant industry field, especially plant facilities, marine plant and core weld components of bridge constructures will be presented.

A Vibration Test of Fuel Tanks for LNG Vehicles (액화천연가스 차량용 연료탱크의 진동시험)

  • Choi, Myung-Jin;Cho, Tae-Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.67-71
    • /
    • 2015
  • Natural frequencies of a cryogenic fuel tank of LNG vehicle were computed to check the safety related to the resonances, and tests were performed to confirm the vibrational durability of a cryogenic fuel tank. There were 3 tests. The first test started at excitation frequency of 31.9Hz, and the test was performed reducing the excitation frequencies. Failure took place at 22.1Hz. The second test was performed with the frequencies to be increased. At 12.7 Hz, failure took place and nitrogen gas was exhausted. In the third test, the excitation frequencies were continuously changed, and the vibration port was failed in the range between 8 Hz and 19.3 Hz. Detailed research on the failed parts of the tank in this study is recommended to enhance the safety of the cryogenic fuel tanks of LNG vehicles.

Structural Safety by Shape of Motorcycle Muffler (오토바이의 머플러 형상별 구조적 안정성)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.72-80
    • /
    • 2020
  • This study performs structural and vibrational analyses on three models of motorcycle mufflers, A, B, and C, due to the pressure of exhaust gases. Model A is the common model seen on motorcycles, model B is a model with a longer outlet, and model C is a model with some curved outlets. This research shows that all models have sufficient strength at the given loading condition, and model A has the highest durability against vibration among three models. The appropriate configuration can be determined to be the most efficient by applying this result to the design of motorcycle muffler.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

Behavior of Rapidly Expansion Materials for Maintenance Railroad Bed Subjected to Cyclic Loading (반복하중을 받는 철도노반 보수용 급속 팽창재료의 거동)

  • Lee, Jundae;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.45-50
    • /
    • 2009
  • The differential settlement may be generated by the variation of stresses caused by the soft ground or ground water. The cracks are usually created when the structures are leaned or deformed due to the differential settlement. A grouting method has been mainly used till now to improve the bearing capacity of the ground when the foundation of the structure is deformed by differential settlements. However, when this method is used, it takes too long time to obtain the required strength and the period of the reinforcement effect is not long enough. The advantage of GPCON injection method is to have good mechanical properties and durability, and easy construction. In addition, the GPCON method rapidly fills up the void in soils by injecting some materials into underground and also obtain the increase of bearing and shearing forces due to the expansion. In this paper the restoration capability of the foundation settlement of railway and subway subjected to cyclic loading is analytically and experimentally evaluated using the high density rapidly expansion GPCON in order to investigate the types of deformations and vibrational characteristics.

  • PDF