DOI QR코드

DOI QR Code

Applied Cases and Application Technologies of Ultrasonic Nanocrystalline Surface Modification and Accelerated Fatigue Life Evaluation Using Ultrasonic Elastic Vibrational Energy

초음파탄성진동에너지를 이용한 표면개질처리 및 가속피로수명평가 기술의 적용사례 및 응용기술

  • Received : 2013.05.13
  • Accepted : 2013.06.30
  • Published : 2013.07.01

Abstract

It is greatly expected that the technologies of durability enhancement and evaluation for the core structures of plant facilities, marine plant and bridge constructures will be greatly expanded in the plant industry fields. In this study, the actively ongoing applied cases were tried to be analyzed in the present domestic industry fields through the Ultrasonic Nanocrystalline Surface Modification (UNSM) and Ultrasonic Fatigue Test (UFT) technologies using ultrasonic elastic vibrational energy, and the new application technology to improve the durability of plant industry field, especially plant facilities, marine plant and core weld components of bridge constructures will be presented.

최근 플랜트산업분야에서는 발전설비와 해양 플랜트 및 선박, 교량 건설등 핵심 구조물들에 대한 내구성 향상 및 평가를 위한 기술이 크게 확장 적용될 것으로 본다. 이에 본 연구에서는 초음파 탄성진동에너지를 이용한 초음파 나노표면개질(Ultrasonic Nanocrystalline Surface Modification) 기술과 초음파 피로시험(Ultrasonic Fatigue Test)기술을 통해서 현재까지 국내산업분야에서 활발하게 진행중인 적용사례를 분석하고자 하였으며. 플랜트분야 특히 발전설비와 해양선박 플랜트 및 교량 건설구조물들의 핵심 용접부에 대한 내구성 향상을 위해 크게 확장 적용될 수 있는 새로운 응용기술 연구방향에 대한 방법들을 제시하고자 한다.

Keywords

Acknowledgement

Supported by : Small and Medium Business Administration

References

  1. Kirkhope, K. J., Bell, R., Caron, L., Basu, R. I. and Ma, K. T., 1999, "Weld Detail Fatigue Life Improvement Techniques. Part 1: Review," Marine Structures, Vol. 12, pp. 447-474. https://doi.org/10.1016/S0951-8339(99)00013-1
  2. Lee, C. S., Cho, I. S., Pyoun, Y. S. and Park., I. G., 2011, "Study of Inner Micro Cracks on Rolling Contact Fatigue of Bearing Steels Using Ultrasonic Nano-Crystalline Surface Modification," Key Engineering Materials, Vols. 462-463, pp. 979-984. https://doi.org/10.4028/www.scientific.net/KEM.462-463.979
  3. Cho, I. S., Amanov, A., Ahn D. G., Shin, K. S., Lee, C. S., Pyoun, Y. S. and Park., I. G., 2011, "Wear Behavior of Cu-Zn Alloy by Ultrasonic Nanocrystalline Surface Modification," Journal of Nanoscience and Nanotechnology, Vol. 11, pp. 6443-6447. https://doi.org/10.1166/jnn.2011.4419
  4. "Ultrasonic Fatigue Testing" ASM, Vol. 8, pp. 718-723.
  5. Cho, I. S., Shin, C. S., Kim, J. Y. and Jeon, Y. H., 2012, "Accelerated Ultrasonic Fatigue Testing Applications and Research Trends," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 6, pp. 707-712. https://doi.org/10.3795/KSME-A.2012.36.6.707
  6. Bathias, C., 2006, "Piezoelectric Fatigue Testing Machines and Devices," International Journal of Fatigue, Vol. 28, pp. 1438-1445. https://doi.org/10.1016/j.ijfatigue.2005.09.020