• Title/Summary/Keyword: vibrational control

Search Result 89, Processing Time 0.023 seconds

Analysis of the Motion of a Cart with an Inverted Flexible Beam and a Concentrated Tip Mass

  • Park, Sangdeok;Wankyun Chung;Youngil Youm;Lee, Jaewon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.367-372
    • /
    • 1998
  • In this paper, the mathematical model of a cut with an inverted flexible beam and a concentrated tip mass was derived. The characteristic equation for calculating the natural frequencies of the cart-beam-mass system was obtained and the motion of the system was analyzed through unconstrained modal analysis. A good positioning response of the cart without excessive vibrational motion of the tip mass could be obtained through numerical simulation using PID controller with the feedback of both the position of the cart and the deflection of the beam.

  • PDF

Launch Environment Specification for KOMPSAT-2 (다목적위성 아리랑 2호 발사환경 규격설정)

  • Kim, Hong-Bae;Rhee, Joo-Hun;Kim, Sung-Hoon;Lee, Sang-Seol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.165-169
    • /
    • 2000
  • High level vibrationional environments induced while launching of spacecraft can damage sensitive equipment or payloads, unless the equipment is properly designed. This is a critical issue for KOMPSAT-2 which will carry a high resolution electro-optic camera and a sophisticated attitude and orbit control system. Thus careful consideration on the launch environment is required in the design stage of spacecraft. This requires generation of vibration specification for each component. This paper describes the generation process of vibrational specification for KOMPAT-2, which is designed and tested by Korean engineers.

  • PDF

Vibration Control of Flexible Manipulator (유연한 조작기의 진동 제어)

  • Bae, Keon-Hyo;Lee, Jae-Won;Joo, Hae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.163-169
    • /
    • 1993
  • A flexible manipulator can move in the high speed even with the small driving torque. The dymanic equations of flexible manipulator which include 2 vibrational modes are derived using the clamped-free boundary condition. Simulation results of the 6th order model are well matched with experimental results. The hub angle of the flexible mainpulator can be controlled without vibration of the beam by the feedback of both hub angle and strain. The overshoot of the hub angle in the step response is reduced without sacrificing the rise time using the cycloidal function instead of the step function as the referenmce input.

  • PDF

A Defect Detection of Thin Welded Plate using an Ultrasonic Infrared Imaging (초음파 열화상 검사를 이용한 박판 용접시편의 결함 검출)

  • Cho, Jai-Wan;Chung, Chin-Man;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1060-1066
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material efficiently. In this paper a detection of the welding defect of thin SUS 304 plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (20kHz) ultrasonic transducer was used to infuse the welded thin SUS 304 plates with a short pulse of sound for 280ms. The ultrasonic source has a maximum power of 2kW. The surface temperature of the area under inspection is imaged by a thermal infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the defect tip and heated up highly, are observed. From the sequence of the thermosonic images, the location of defective or inhomogeneous regions in the welded thin SUS 304 plates can be detected easily.

Effects of Guideway's Vibration Characteristics on Dynamics of a Maglev Vehicle (가이드웨이 진동 특성이 자기부상열차 동특성에 미치는 영향)

  • Han, Hyung-Suk;Yim, Bong-Hyuk;Lee, Nam-Jin;Hur, Young-Chul;Kwon, Jung-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-306
    • /
    • 2008
  • The electromagnet in Maglev vehicles controls the voltage in its winding to maintain the air gap, a clearance between the electromagnet and guideway, within an allowable deviation, with strongly interacting with the flexible guideway. Thus, the vibration characteristics of guideway plays important role in dynamics of Maglev vehicles using electromagnet as an active suspension system. The effects of the guideway's vibrational characteristics on dynamics of the Maglev vehicle UTM-01 are analyzed. The coupled equations of motion of the vehicle/guideway with 3 DOFs are derived. Eigenvalues are calculated and frequency response analysis is also performed for a clear understanding of the dynamic characteristics due to guideway vibration characteristics. To verify the results, tests of the urban Mgalev vehicle UTM-02 are carried out. It is recommended that the natural frequency of the guideway be minimized and its damping ratio in the Maglev vehicle with a 5-states feedback control law as a levitation control law.

Vibration control of small horizontal axis wind turbine blade with shape memory alloy

  • Mouleeswaran, Senthil Kumar;Mani, Yuvaraja;Keerthivasan, P.;Veeraragu, Jagadeesh
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

Effect of Red Pepper (Capsicum frutescens) Powder or Red Pepper Pigment on the Performance and Egg Yolk Color of Laying Hens

  • Li, Huaqiang;Jin, Liji;Wu, Feifei;Thacker, Philip;Li, Xiaoyu;You, Jiansong;Wang, Xiaoyan;Liu, Sizhao;Li, Shuying;Xu, Yongping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1605-1610
    • /
    • 2012
  • Two experiments were conducted to study the effects of red pepper (Capsicum frutescens) powder or red pepper pigment on the performance and egg yolk color of laying hens. In Exp. 1, 210, thirty-wk old, Hy-line Brown laying hens were fed one of seven diets containing 0.3, 0.6, 1.2, 2.0, 4.8 or 9.6 ppm red pepper pigment or 0.3 ppm carophyll red. Each diet was fed to three replicate batteries of hens with each battery consisting of a row of five cages of hens with two hens per cage (n = 3). In Exp. 2, 180, thirty-wk old, Hyline Brown laying hens, housed similarly to those in Exp. 1, were fed an unsupplemented basal diet as well as treatments in which the basal diet was supplemented with 0.8% red pepper powder processed in a laboratory blender to an average particle size of $300{\mu}m$, 0.8% red pepper powder processed as a super fine powder with a vibrational mill ($44{\mu}m$) and finally 0.8% red pepper powder processed as a super fine powder with a vibrational mill but mixed with 5% $Na_2CO_3$ either before or after grinding. A diet supplemented with 0.3 ppm carophyll red pigment was also included (n = 3). In both experiments, hens were fed the red pepper powder or pigment for 14 days. After feeding of the powder or pigment was terminated, all hens were fed the basal diet for eight more days to determine if the dietary treatments had any residual effects. In Exp. 1, there were no differences in egg-laying performance, feed consumption or feed conversion ratio due to inclusion of red pepper pigment in the diet. Average egg weight was higher (p<0.05) for birds fed 1.2, 2.4 or 9.6 ppm red pepper pigment than for birds fed the diet containing 0.3 ppm red pepper pigment. On d 14, egg color scores increased linearly as the level of red pepper pigment in the diet increased. In Exp. 2, feeding red pepper powder did not affect egg-laying performance, feed consumption or feed conversion ratio (p>0.05). However, compared with the control group, supplementation with all of the red pepper powder treatments increased egg weight (p<0.05). All the red pepper powder treatments also increased (p<0.05) the yolk color score compared with the control. The results of the present study suggest that both red pepper powder and pigment are effective feed additives for improving egg yolk color for laying hens.

A CMOS Interface Circuit for Vibrational Energy Harvesting with MPPT Control (MPPT 제어 기능을 갖는 진동에너지 수확을 위한 CMOS 인터페이스 회로)

  • Yang, Min-Jae;Yoon, Eun-Jung;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This paper presents a CMOS interface circuit for vibration energy harvesting with MPPT (Maximum Power Point Tracking). In the proposed system a PMU (Power Management Unit) is employed at the output of a DC-DC boost converter to provide a regulated output with low-cost and simple architecture. In addition an MPPT controller using FOC (Fractional Open Circuit) technique is designed to harvest maximum power from vibration devices and increase efficiency of overall system. The AC signal from vibration devices is converted into a DC signal by an AC-DC converter, and then boosted through the DC-DC boost converter. The boosted signal is converted into a duty-cycled and regulated signal and delivered to loads by the PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a DC-DC boost converter architecture using a schottky diode is employed for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process, and the designed chip occupies $915{\mu}m{\times}895{\mu}m$. Simulation results shows that the maximum power efficiency of the entire system is 83.4%.

Performance Qualification Test of the CRDM for JRTR (요르단 연구용원자로 제어봉구동장치의 성능검증시험)

  • Choi, M.H.;Cho, Y.G.;Kim, J.H.;Lee, K.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.807-814
    • /
    • 2015
  • A control rod drive mechanism(CRDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod containing a neutron absorbing material within a reactor core to control the reactivity of the core. The top-mounted CRDM for Jordan Research and Training Reactor(JRTR) with 5 MW power has been designed and fabricated based on the HANARO's experience through KAERI and DAEWOO consortium project. This paper describes the performance qualification test results to demonstrate the operability of a prototype and four production CRDMs during the reactor lifetime. The driving performance, the drop performance and the endurance tests for CRDM are carried out at a test rig simulating the actual reactor conditions. A vibration of internal components due to the coolant flow is also measured using a laser vibrometer. As a result, the CRDMs are driven having a good driving performance without a malfunction between command and output signals for the stepping motor. Also, the pure drop time and the impact acceleration are within 0.72 s and 4.2 g to meet the design requirements, and the vibrational displacement of control rod is measured as maximum $5.2{\mu}m$.

Design and experiment with a plastic mulch wrapper using a hydraulic system

  • Park, Hyo Je;Lee, Sang Yoon;Park, Yong Hyun;Kim, Young Keun;Choi, Il Su;Nam, Young Jo;Kweon, Gi Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.43-58
    • /
    • 2020
  • Mulching plastic is used for the purpose of maintaining soil temperature, moisture, and weed and pest prevention in agriculture. Any remaining plastic after use may contaminate the soil and damage crop growth. To solve this problem, mulching plastic wrappers have been studied and developed, but the actual use rate is quite low due to their poor performance and frequent tearing of the plastic on the field. In this study, we developed a tractor attachable mulching plastic wrapper to minimize the tearing of the mulched plastic. The developed mulching plastic wrapper consists of hydraulic motors and pumps, valves, a microcontroller, and sensors. The collecting speed of the plastic mulch was calculated considering the tractor's travel speed and the radius of the collecting drum. A proportional controller was designed to control the rotating speed of the hydraulic motor as the plastic was wound around the collection drum and the radius increased. The performance of an indoor experiment was quite promising because the difference between the collecting speed predicted by the calculation and the actual collecting speed was 2.71 rpm. Based on a field verification test, the speed difference was max. 14.28 rpm; thus, the, proportional integral derivative (PID) controller needs to be considered to control the drum speed precisely. Another issue was found when the soil covered at the edge of the plastic was hardened or the road surface was uneven, the speed control was unstable, and the plastic was torn. In future research, vibrational plows will be equipped to break-up the harden soil for collecting the plastic smoothly.