• 제목/요약/키워드: vibration velocity

검색결과 1,398건 처리시간 0.026초

발파하중이 인접 댐에 미치는 진동영향에 대한 연계해석적 검토 (Coupled analysis for the influence of blasting-induced vibration on adjacent dam)

  • 박인준;김성인;남기천;곽창원
    • 한국터널지하공간학회 논문집
    • /
    • 제6권1호
    • /
    • pp.41-50
    • /
    • 2004
  • 본 논문에서는 기존댐 인접지에 터널구조물을 건설하기 위한 발파시, 폭괴하중으로 인한 지반진통이 댐 제체와 간극수암에 마치는 영향을 고찰하였다. 댐의 안정성 검토는 발파시 발생하는 코어부의 최대입자속도 (Peak Particle Velocity)를 계산하여 수행하였다. 간극수와 지반진동간의 상호 연계해석을 위하여 댐 제체에 대한 정상상태 흐름해석을 수행하여 간극수압 분포를 파악하고, 유발된 과잉간극수암 및 유효응력분포로 발파하중이 인접지반에 미치는 영향을 분석하였다. 또한 발파와 같은 급속하중 재하 후 과잉간극수압의 증가 및 소산현상 해석을 위하여 Finn & Byrne Model을 적용하여 하중재하 전후의 유효응력 변화양상을 검토하였다.

  • PDF

크랙을 가진 회전 외팔보의 동특성 해석 (Dynamic Behavior of Rotating Cantilever Beam with Crack)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.620-628
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip-displacement and the axial tip-deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration. When the crack depth is constant, the natural frequencies of a rotating cantilever beam are proportional to the rotating angular velocity in the each direction.

이동질량들을 가진 단순지지된 유체유동 파이프의 동특성 (Dynamic Behavior of a Simply Supported Fluid Flow Pipe with Moving Masses)

  • 윤한익;임순홍
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.132-140
    • /
    • 2002
  • A simply supported pipe conveying fluid and the moving masses upon it constitute this vibrational system. The equation of motion is derived by using Lagrange's equation. The influence of the velocity and the inertia force of the moving masses and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipw by numerical method. The velocities of fluid flow are considered within its critical values of the simply supported pipe without the moving masses upon it. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. The dynamic deflection of the simply supported pipe conveying fluid is increased by a coupling of the moving masses and the velocities of the moving masses and the fluid flow. When four or five regular interval masses move on the simply supported pipe conveying fluid, the amplitude of the simply supported pipe conveying fluid is small at low velocity of the masses, but at high velocity of the masses the deflection of midspan of the pipe is increased by coupling with the numbers and magnitude of the masses. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the number of moving masses.

단순지지 송수관의 동특성에 미치는 이동질량의 영향 (Influence of a Moving Mass on Dynamic Behavior of a Simply Supported Pipe Conveying Fluid)

  • 윤한익
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.135-140
    • /
    • 2001
  • A simply supported pipe conveying fluid and a moving mass upon it constitute a vibrational system. The equation of motion is derived by using Lagrange's equation. The influence of the velocity and the inertia force of a moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipe by numerical method. The velocities of fluid low are considered within its critical values of the simply supported pipe without a moving mass upon it. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. as the velocity of a moving mass increases, the deflection of midspan of a simply supported pipe conveying fluid is increased and the frequency of transverse vibration of the pipe is not varied. Increasing of the velocity of fluid flow makes the frequency of transverse vibration of the simply supported pipe conveying fluid decrease and the deflection of midspan of the pipe increase. The deflection of the simply supported pipe conveying fluid is increased by a coupling of the moving mass and the velocities of a moving mass and fluid flow.

  • PDF

다물체계의 선형 동역학식을 이용한 대차의 진동 해석 (Vibration Analysis of a Bogie Using Linearized Dynamic Equations of a Multibody System)

  • 강주석
    • 한국철도학회논문집
    • /
    • 제17권5호
    • /
    • pp.321-327
    • /
    • 2014
  • 본 연구에서는 구속된 다물체계의 비선형 운동방정식으로부터 QR분해법을 이용하여 선형 운동방정식을 유도하는 방법을 제시하였다. 다물체계의 선형 진동 방정식을 철도차량 대차에 적용하여 대차의 고유 진동모드를 구하고 레일의 변위 입력에 대한 대차프레임의 전달 함수를 구하여 대차의 진동 특성을 분석하였다. 대차의 고유 모드는 35Hz이하에서 나타났고 198Hz이상에서 국부모드가 계산되었다. 대차 프레임의 수직변위 전달함수는 수직변위 모드와 피치 모드가 속도에 영향을 받기 때문에 속도에 따라 변화하는 것으로 나타났다. 횡방향 전달함수는 매우 작게 나타났으며 전후방향 전달함수는 속도에 관계없이 전후방향 변위 모드가 주로 가진되는 것으로 나타났다.

가정모드법을 이용한 축방향으로 이동하는 연속체의 종진동 해석 (Longitudinal Vibration Analysis of an Axially Moving Material by Using the Assumed Modes Method)

  • 정진태;허진욱;한창수
    • 소음진동
    • /
    • 제10권1호
    • /
    • pp.138-143
    • /
    • 2000
  • Longitudinal vibration of an axially moving material is investigated by using the assumed modes method. To circumvent a difficulty in choosing the comparison functions which satisfy the boundary conditions, the assumed modes method is adopted by which equations of motion are discretized. Based on the discretized equations, the complex eigenvalue problem is solved and then the effects of the translating velocity on the natural frequencies and modes are analyzed.

  • PDF

능동구속감쇠 기법을 이용한 보의 진동제어 실험 (Experiment on Vibration control of Beam using Active Constrained Layer Damping Treatment)

  • 최진영;강영규;김재환;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.262-267
    • /
    • 2000
  • The flexural vibration of aluminum beams with active and passive constrained-layer damping has been investigated experimentally to design structure with maximum possible damping capacity. Piezoelectric film is used as sensor and piezoceramic as actuator for negative velocity feedback control. This paper shows the effectiveness of active constrained-layer damping treatment through experiment, and we have carried out an experiment to study effect of beam thickness.

  • PDF

The Analysis of Flow-Induced Vibration and Design Improvement in KSNP Steam Generators of UCN #5, 6

  • Kim, Sang-Nyung;Cho, Yeon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.74-81
    • /
    • 2004
  • The KSNP Steam Generators (Youngkwang Unit 3 and 4, Ulchin Unit 3 and 4) have a problem of U-tube fretting wear due to Flow Induced Vibration (FIV). In particular, the wear is localized and concentrated in a small area of upper part of U-bend in the Central Cavity region. The region has some conditions susceptible to the FIV, which are high flow velocity, high void fraction, and long unsupported span. Even though the FIV could be occurred by many mechanisms, the main mechanism would be fluid-elastic instability, or turbulent excitation. To remedy the problem, Eggcrate Flow Distribution Plate (EFDP) was installed in the Central Cavity region or Ulchin Unit 5 and 6 steam generators, so that it reduces the flow velocity in the region to a certain level. However, the cause of the FIV and the effectiveness of the EFDP was not thoroughly studied and checked. In this study, therefore the Stability Ratio (SR), which is the ratio of the actual velocity to the critical velocity, was compared between the value before the installation of EFDP and that after. Also the possibility of fluid-elastic instability of KSNP steam generator and the effectiveness of EFDP were checked based on the ATHOS3 code calculation and the Pettigrew's experimental results. The calculated results were plotted in a fluid-elastic instability criteria-diagram (Pettigrew, 1998, Fig. 9). The plotted result showed that KSNP steam generator with EFDP had the margin of Fluid-Elastic Instability by almost 25%.

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

공내 매질이 구조물의 발파이격거리에 미치는 영향에 관한 연구 (A Study on the Effect of the Stemming Hole medium to the Blasting Separation Distance of Structure)

  • 강희섭;정중규;방명석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권1호
    • /
    • pp.100-108
    • /
    • 2017
  • 최근에 도시화와 산업화 및 교통망의 지속적인 확보로 인하여 발파공사를 시행하는 공사장이 증가하고 있다. 발파공사는 주변 주민들의 주거환경과 인접시설물들의 안전에 큰 영향을 미치므로 이에 대한 대책이 필요하다. 본 연구에서는 발파피해를 줄이기 위한 방법 중에서 발파공내의 발파메커니즘을 규명하고 개선하였다. 일반적인 공법에서 발생하는 천공경과 폭약경 사이의 차이로 인한 공간에서 디커플링효과를 규명하고, 이 공간의 매질을 변화시킴으로서 발파 시 진동발생의 규모를 규명하였다. 발파시험은 도로, 철도, 산업단지에서 실시하고, 발파진동을 측정하였다. 측정된 진동속도를 회귀분석하여 발파진동추정식을 산정하고 이를 이용하여 이격거리를 산정하였다. 공내 매질이 공기보다는 물처럼 비중이 큰 경우에 충격력은 크나 폭발 지연시간이 짧아 진동전달거리가 작아 이격거리를 크게 확보할 수 있다.