• 제목/요약/키워드: vibration velocity

검색결과 1,398건 처리시간 0.028초

고속 압연방식을 이용한 Weather strip 용 Insert metal 공정설계 (Process Planning for Insert Metal of Weather Strip Using High Speed Rolling-Type)

  • 박지수;이현우;정성윤;배준호;김화영;김철
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1279-1287
    • /
    • 2011
  • Weather strip is a functional component of a car body and doors for leaking protection, isolating outside noise and vibration reduction. Insert metal inserted to the weather strip plays a key role to keep the shape of the weather strip and increase its strength. Insert metal is mainly produced by a press process, which has low productivity and 40% material loss due to the scraps. To solve the problems, a high-speed rolling process for manufacturing the insert metal of weather strip is being attempted. In this study, the insert metal is manufactured by a high-speed rolling process, and its process variables: reduction, relative velocity of rollers and the number of passes, are optimized by using the FEA and the actual tests. The prototype was manufactured by the optimal process.

G7 한국형 고속전철 자동제어를 위한 통합형 데이터 취득 장치의 설계방안 (The Design of Integrated Data Acquisition Board(IDAB) to Achieve Automatic Control of Korea High Speed Railway(HSR 350X))

  • 조필성;김정한;박동호;김찬호;최항섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.3081-3083
    • /
    • 2005
  • 한국형 고속전철차량의 자동제어 구현을 위해서 우선 다양한 종류의 장치들로부터 상태정보(Line Voltage-열차가선전압, Bogie Hunting, Preset Speed, PWM, Train Velocity, Brake Pressure, Reservoir Pressure)를 취득해야하며, Main Process Unit(MPU)에서의 고속 Data 처리를 위해서 취득한 Analog Data를 신속하게 Digital Data로 변환해야 한다. 또한 열차내의 특수한 조건(Noise, Vibration)에서도 안정적인 데이터의 취득을 만족시켜야한다. 이와 같은 상황을 고려한 독자적이 통합형 데이터 취득 장치 -Integrated Data Acquisition Board(IDAB)-의 설계방안을 제시하였다.

  • PDF

워터제트 추진기 유입관의 내부유동 전산해석 (Numerical Internal Flow Analysis of Intake Duct of Waterjet Propulsion)

  • 윤현석;박원규;전호환;김문찬
    • 대한조선학회논문집
    • /
    • 제42권1호
    • /
    • pp.1-9
    • /
    • 2005
  • Waterjet propulsion is widely used to thrust high speed marine vessels in excess of 30-35 knots by virtue of the high propulsive efficiency, good maneuverability, and less cavitation. From the aspect of power loss, approximately $7-9\%$ of the total power is lost in intake duct due to the flow separation, nonuniformity, etc. Thus, detail understanding of flow phenomena occurring within intake duct is essential to reduce the power loss, as well as noise and vibration. The present work solved 30 incompressible RANS equations to provide complicated viscous flow features of intake duct. The numerical results were compared with experiments and good agreements were obtained for three jet velocity ratios.

내재된 입력성형기: 사다리꼴 프로파일과 S-커브 프로파일의 차이 (Embedded Input Shaper: Difference between Trapezoidal Profile and S-curve Profile)

  • 하창완;이동욱;윤병호;류근호;김경수
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1125-1130
    • /
    • 2014
  • In this paper, we discuss the relation between the motion profile and pre-filter. As previously reported in various literatures [1-3], a tuned motion profile can effectively reduce residual vibration by placing inherent zeros of the motion profile at the vibratory pole of systems similar to the role of the input shaping technique. From the results, we factorize the motion profile into a basis function and an input shaper. In contrast to the previously reported impulse-sequence-based input shapers, the input shaper extracted from the motion profile has unique characteristics. Thanks to the characteristics of the input shaper extracted from the motion profile, it has advantages to reduce the vibrations caused by not only the modeled vibratory mode but also unmodeled dynamics which exist in higher frequency ranges.

Dynamic crosswind fatigue of slender vertical structures

  • Repetto, Maria Pia;Solari, Giovanni
    • Wind and Structures
    • /
    • 제5권6호
    • /
    • pp.527-542
    • /
    • 2002
  • Wind-excited vibrations of slender structures can induce fatigue damage and cause structural failure without exceeding ultimate limit state. Unfortunately, the growing importance of this problem is coupled with an evident lack of simple calculation criteria. This paper proposes a mathematical method for evaluating the crosswind fatigue of slender vertical structures, which represents the dual formulation of a parallel method that the authors recently developed with regard to alongwind vibrations. It takes into account the probability distribution of the mean wind velocity at the structural site. The aerodynamic crosswind actions on the stationary structure are caused by the vortex shedding and by the lateral turbulence, both schematised by spectral models. The structural response in the small displacement regime is expressed in closed form by considering only the contribution of the first vibration mode. The stress cycle counting is based on a probabilistic method for narrow-band processes and leads to analytical formulae of the stress cycles histogram, of the accumulated damage and of the fatigue life. The extension of this procedure to take into account aeroelastic vibrations due to lock-in is carried out by means of ESDU method. The examples point out the great importance of vortex shedding and especially of lock-in concerning fatigue.

지반 물성값에 따른 항타 진동이 지중 삼중관에 미치는 거동 분석 (Effect of Pile Driving on Three Layered Pipeline according to Soil Properties Variation)

  • 유한규;최정현;원종화;김문겸
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.765-770
    • /
    • 2010
  • In this study, the behavior of underground pipeline subjected to pile driving is examined using the verified finite element model based on the field experiment. Young's modules of surface soil is varied and elastic modulus of the other soil layer is fixed. The pile driving force model proposed by Mounir E. Mabsout in 1999 was used and it was functions of time and of force. The forcing function applied on this study considers the kinetic energy of ram located at 1.2m height with 7 tonf. The 3-layered pipeline is composed of steel(inner) pipe, PUR(Polyurethane Resin, filler) and HDPE(outer) pipe, and the length/diameter of main steel pipe is 20m/0.8m(O.D). It is used for district heating pipes in Korea. The results are expressed in terms of Von Mises stress, displacement, and vibration velocity for each soil condition. From the results of the analyses, PUR which is originally intended as a thermal insulation of inner pipe shows performance as a structural member which distributes external pressure.

  • PDF

지반응답해석 Round Robin Test 결과 종합적 분석 연구 (Comprehensive Evaluation of Results of Ground Response analysis Round Robin Test)

  • 박두희;윤종구;박영호;안창윤;김재연
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.334-344
    • /
    • 2007
  • This paper performed a comprehensive evaluation of the results of the 2007 Ground Response Analysis Round Robin Test, at which 14 institutions and individuals participated. The submitted results showed significant discrepancies. The main reason for this difference has been attributed to the dispersion in the estimated shear wave velocity profiles and dynamic soil curves. It is therefore concluded that accurate evaluation of the material properties is of primary importance for reliable estimation of the ground vibration. Evaluation of the effect of the analysis method showed that the equivalent linear analysis overestimates the peak ground acceleration, but overall the results are similar to a total stress nonlinear analysis. However, the total and effective stress nonlinear analyses show distinct discrepancies, the effective stress analyses consistently resulting in a lower response due to the development of the excess pore water pressure and thus softer response.

  • PDF

디젤해머에 의한 콘크리트말뚝 항타시(抗打時) 발생(發生)되는 지반진동(地盤振動)의 측정(測定) 및 영향평가(影響評價) (Measurement and Control of Ground Vibrations due to Precast Concrete Pile-driving by Diesel Hammer)

  • 박연수;전준수
    • 대한토목학회논문집
    • /
    • 제9권1호
    • /
    • pp.71-78
    • /
    • 1989
  • 본(本) 논문(論文)은 주거(住居) 및 상가구조물(商街構造物)이 밀집(密集)된 지역(地域)에서 구조물(構造物)의 말뚝기초공사(基礎工事)를 위한 항타작업시(抗打作業時) 야기되는 지반진동(地盤振動)의 영향(影響)을 평가(平價)하기 위해서 디젤해머로 PC콘크리트말뚝을 항타(抗打)하는 동안 발생(發生)되는 지반진동(地盤振動)을 항타지점(抗打地點)으로부터 진동측정거리(振動測定距離)를 변경시키면서 측정(測定) 분석(分析)하였다. 본(本) 논문(論文)의 측정(測定)과 분석(分析)을 통하여 항타진동(抗打振動)의 감소(減素) 및 주파수특성(周波數特性)이 파악되었으며, 이로부터 항타진동(抗打振動)의 크기를 사전(事前)에 예측(豫測)할 수 있는 진동추정식(振動推定式)의 유도 및 항타기(抗打機) 선정(選定)을 비롯한 제반문제에 대하여 고찰(考察)하였다.

  • PDF

Fuzzy 알고리즘을 이용한 엘리베이터 안전진단 및 동특성 분석 포터블 장비 개발 (A study on the Development of the Portable Device for Safety Diagnosis and Dynamic Characteristics Analysis of Elevator using Fuzzy Algorithm)

  • 김태형;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.199-202
    • /
    • 2001
  • An elevator system, which is essential equipment for vertical movement of an object, as a property of building, has been driven by various expenditures and purposes. Since developing electrical control technology, control system are highly developed. The elevator system has expanded widely, but a data accuracy acquisition technique and safety predict technique for securing system safety is still at a basic level. So, objective verification for elevator confidence condition requires an absolute accuracy measurement technique. Therefore, this study is executed in order to acquire a method of depending on sense of a manager with simple numeric measurement data, and to construct a logical, analytical foresight system for more efficient elevator management system. As an artificial intelligence for diagnosis, the fuzzy inference algorithm is used for foreseeing the system in this thesis, because the fuzzy algorithm is the most useful method for resolving subjective ideas and a vague judgment of humans. The fuzzy inference algorithm is developed for each sensor signal(i.e. vibration, velocity, current).

  • PDF

비대칭 터빈 로터 실에 기인한 축 가진력 (Rotordynamic Forces Due to Rotor Sealing Gap in Turbines)

  • 김우준;송범호;송성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF