• Title/Summary/Keyword: vibration transfer

Search Result 1,052, Processing Time 0.029 seconds

Torsional Vibration Stress Analysis for Shafting in Reciprocating Machine by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 왕복 기계 축계의 비틀림진동 응력해석)

  • 최명수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.749-756
    • /
    • 2004
  • While designing shafting in reciprocating machines with internal combustion engines which derive generators, pumps, and vehicles, it is very important to calculate the additional stress of shafting by torsional vibration. In this paper, the transfer stiffness coefficient method which is based on the successive transfer of stiffness coefficient was applied to the calculation of the additional stress of shafting in reciprocating machine by torsional vibration. In order to confirm the effectiveness of the present method, a propulsion shafting with a diesel engine in a vessel was considered as the computational example of shafting in reciprocating machine. The results calculated by the present method were compared with those of the modal analysis method, the mechanical impedance method, and free vibration analysis.

A Method to Prevent Transfer Device of Image Stabilizer from Blunting by Artificial Vibration (가진입력에 의한 손떨림 보정용 이송장치의 둔화현상 방지대책)

  • Yeom, Dong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1076-1079
    • /
    • 2009
  • This article deals with an optical image stabilizer which moves an image sensor in the direction of cancelling the vibration caused by hand shaking to prevent a photographed image from blurring. The ball-guide way method adopted as a transfer device of the image sensor is easy to be manufactured because of its simple structure and is suitable to minimize the friction between mechanisms, but has weakness of a chance of physical defect such as groove and rising. In case that the movement of the transfer device equipped with the image sensor is blunted because a ball is stuck in defects of guide way, the performance of the image stabilizer falls down drastically. We propose a method to prevent the transfer device from blunting by applying artificial vibration. At this time, the artificial vibration should be designed under consideration of dynamic characteristics and specifications of the system to be discriminated from the vibration caused by hand shaking.

Transfer Path Analysis and Estimation of the Road Noise for the Driving Vehicle (주행 차량의 로드 노이즈 예측을 위한 각 입력원의 기여도 평가)

  • Yang, In-Hyung;Jeong, Jae-Eun;Yoon, Ji-Hyun;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1071-1077
    • /
    • 2010
  • The reduction of the vehicle interior noise has been the main interest of noise and vibration harshness(NVH) engineers. A passenger vehicle has various and complicated transmission paths of sound and vibration. In order to identify the mechanism of transfer path, estimation of excitation force and exact modeling of transfer path are required. This paper presents method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. And vector synthesis technique is employed to identify the characteristics of road noise and its transmission to vehicle compartment through noise and vibration analysis. Vibration reduction efficiency of each transfer path is evaluated by comparing individual vector components obtained virtual simulation.

Vibration Analysis of the Helical Gear System by Spectral Transfer Matrix (스펙트럴 전달행렬에 의한 헬리컬 기어계의 진동해석)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.774-781
    • /
    • 2006
  • This paper presents a study on the analytical prediction of vibration transmission from helical gears to the bearing. The proposed method is based on the application of the three dimensional helical gear behaviors and complete description of shaft by the spectral method. Helical gear system used in this paper consists of the driving element, helical gears, shafts, bearings, couplings and load element. In order to describe all translation and rotation motion of helical gears twelve degree of freedom equations of motion by the transmission error excitation are derived. Using these equations, transfer matrix for the helical gear is derived. For the detail behavior of shaft motion, the $12{\times}12$ transfer matrix for the shaft is derived. Transfer matrix for the bearing, coupling, driving element, and load is also derived. Application of the boundary conditions in the assembled transfer matrix produces the forces and displacements in each element of the helical gear system. The effect of the proposed method is shown by numerical example.

  • PDF

Estimation of Pump Induced Vibration Force Using Transfer Function (전달함수를 이용한 펌프(50Hp)의 진동가진력 산정)

  • 노병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.157-162
    • /
    • 1998
  • Dynamic loads may arise from rotating parte of pump if they are insufficiently balanced. The magnitude of pump induced vibrations varies according to the weight, eccentricity, and unbalanced mass of pump. This is a study to estimate the pump induced vibration in time and frequency domain by transfer function. The transfer function has real and imaginary information of signals, and response function has also real and imaginary information. So the vibration force can be obtained from the response and transfer function by complex calculation. The amplitudes and components of 50Hp pump vibration force are suggested.

  • PDF

The Effect of Ultrasonic Vibration on Heat Transfer Augmentation of Forced Convective Flow in Circular Pipes (초음파 진동이 관내 강제대류 유동의 열전달 증진에 미치는 영향)

  • Jeong Ji Hwan
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.275-280
    • /
    • 2004
  • Augmentation of heat transfer by ultrasonic vibration in pipes are investigated. Measurements of convective heat transfer coefficients on circular pipe walls are made with and without ultrasonic vibration applied to water. These data are compared with each other to quantify the effects of ultrasonic vibration on heat transfer enhancement. Numerical analysis has been also performed in order to extend the ranges of examined temperature and flow rate. FLUENT Ver.6.1 is used to simulate velocity and temperature fields and evaluate heat transfer coefficient with and without ultrasonic vibration. The results show that the ultra- sonic vibration enhances the Nusselt number of forced convection flow and the increase rate strongly depends on flow rate.

A Study on the Calculation of Vibration Transfer Formula for Ground Vibration (지반의 진동전달식 산정에 관한 연구)

  • 홍갑표;전호민
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.799-806
    • /
    • 1998
  • Noise and vibration due to railway traffic are major causes of environmental pollution in the city. In course of judging, assessing and coping with the problem, it becomes imperative to predict the vibration level induced by railway traffic passing through downtown in the city. The vibration due to railway traffic is transferred to the neighbouring buildings through the ground. In this study, as a method predicting vibration level of the buildings near railway, a vibration transfer formula is suggested. This formula is used to calculate vibration level occuring at the bottom of the neighbouring buildings, which are located at a certain distance from railway.

  • PDF

Vibration Serviceability Evaluation of Railway Bridges Considering Bridge-train Transfer function (열차-교량 진동전달특성을 이용한 철도교량의 진동사용성 평가기법)

  • Jeon, Bub-Gyu;Kim, Nam Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.359-366
    • /
    • 2009
  • This paper aims for analyzing the vibration serviceability of train by simply expressing its vertical vibration when it passes a railway bridge. For this purpose, bridge-train transfer function was derived and bridge-train interaction analysis was performed by using the derived function. The bridge-train transfer function was developed with the assumption that train is a single mass-spring system, and bridge-train interaction analysis was performed on simple beams of KTX passenger car. The vertical acceleration signals of passenger cars obtained from bridge-train interaction analysis were compared with them of cars obtained from the bridge-train transfer function. As a result, it could be estimated to express the vertical vibration inside the passenger car required for vibration serviceability evaluation by using the vertical vibration of bridges obtained from moving load analysis. Therefore, it may be possible to evaluate the vibration serviceability of railway bridges considering bridge-train interaction effect.

  • PDF

Program Development for Vibration Performance Evaluation of Powder Transfer Equipment (분립체 이송장치의 진동 성능평가를 위한 프로그램 개발)

  • Lee Hyoung Woo;Park No Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.170-179
    • /
    • 2004
  • A vibration model of powder transfer equipment is developed by the lumped parameter method. A Powder transfer equipment does surging motion, bouncing motion and pitching motion. Motion equation becomes decoupling and removed vibration exciting source about pitching motion, and therefore designers presented the optimum design plan to be able to do adjustment with motion trajectory of powder transfer equipment. That is, way for design to be able to do motion trajectory of powder transfer equipment through change of design element as installation position and direction of motor, driving speed, mass unbalance, stiffness coefficient and installation position of support coil spring is presented. The design results, powder transfer equipment were able to know that fatigue destruction does not occur, and the reason is because maximum stress working on a basket structure is more very than fatigue strength small.

The Transfer Matrix Method for Three-Dimensional Vibration Analysis of Crank Shaft (전달행렬법을 사용한 크랭크축의 3차원 진동해석)

  • 이정윤;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.152-159
    • /
    • 1997
  • This paper presents a vibration analysis method of crank shaft of six cylinder internal combustion engine. For simple analysis journal, pin and arm parts were assumed to have uniform section. Transfer Matrix Method was used, considering branched part and coordinate transformation part. Natural frequencies, modeshapes and transfer functions of crank shaft were investigated based upon the Euler beam theory: It was shown that the calculated natural frequencies, modeshapes agree well with the existing paper results.

  • PDF