• 제목/요약/키워드: vibration parameter

검색결과 1,320건 처리시간 0.023초

GDQM에 의한 띠판을 갖는 조립 칼럼의 좌굴 해석 (Buckling Analysis of Built up Column with Stay Plates by the Generalized Differential Quadrature Method)

  • 신영재;김재호;정인식
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.462-474
    • /
    • 2001
  • In this paper, Generalized Differential Quadrature Method is applied to the buckling analysis of built-up columns without or with stay plates. numerical analysis using GDQM is carried out for various boundary conditions(simply supported conditions, fixed conditions, fixed-simply supported conditions), dimensionless stiffness parameter and dimensionless inertia moment parameter. The accuracy and convergence of solutions are compared with exact solutions of Gjelsvik to validate the results of GDQM. Results obtained by this method are as follows. 91) This method can yield the accurate numerical solutions using few grid points. (2) The buckling load of built-up column increases as the dimensionless stiffness parameter decreases. (3) The effects of boundary conditions on the buckling load are not considerable as the dimensionless stiffness parameter increases. (4) The buckling load of built-up column increases due to the stay plate.

  • PDF

The Vibration Suppressible Method with Estimated Torsion Torque Feedback in Fuzzy Controller

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok;Kim, Bong-Gi
    • Journal of information and communication convergence engineering
    • /
    • 제6권4호
    • /
    • pp.421-424
    • /
    • 2008
  • In torque transmission system, we must suppressed vibration for Accuracy characteristic response of motor, Therefore, vibration suppression factor is very important motor control. To suppress vibration, a various control method has been proposed. Specially, one method of vibration suppression used disturbance observer filter. This method is torsion torque passing disturbance observer filter. By the estimated torsion torque feedback, vibration can be suppressed. The CDM(coefficient diagram method) is used to design the filter and Proportional controller. But using coefficient diagram method, not adapted controller parameter in disturbance. For this solution, we used fuzzy controller for auto tuning controller parameter. We proved this approach is confirmed by simulation.

Integrated vibration control and health monitoring of building structures: a time-domain approach

  • Chen, B.;Xu, Y.L.;Zhao, X.
    • Smart Structures and Systems
    • /
    • 제6권7호
    • /
    • pp.811-833
    • /
    • 2010
  • Vibration control and health monitoring of building structures have been actively investigated in recent years but treated separately according to the primary objective pursued. This paper presents a general approach in the time domain for integrating vibration control and health monitoring of a building structure to accommodate various types of control devices and on-line damage detection. The concept of the time-domain approach for integrated vibration control and health monitoring is first introduced. A parameter identification scheme is then developed to identify structural stiffness parameters and update the structural analytical model. Based on the updated analytical model, vibration control of the building using semi-active friction dampers against earthquake excitation is carried out. By assuming that the building suffers certain damage after extreme event or long service and by using the previously identified original structural parameters, a damage detection scheme is finally proposed and used for damage detection. The feasibility of the proposed approach is demonstrated through detailed numerical examples and extensive parameter studies.

가속도 크기 변수에 따른 수직진동에 대한 인지수준 고찰 (Investigation for the Characters of Human Perception Level according to Acceleration Value Parameters)

  • 이민정;한상환
    • 한국소음진동공학회논문집
    • /
    • 제24권9호
    • /
    • pp.731-740
    • /
    • 2014
  • Occupants induced floor vertical vibrations may cause other occupant's annoyance and lead to social loss. To help control such floor vibrations, several criteria have been developed mostly based on human perception tests and floor vibration tests. Floor vibration is evaluated by comparison with criteria and vibration parameters of subject floor, such as frequency, damping ratio, acceleration value, vibration duration time and occurrence frequency. Three acceleration value parameters are used in criteria; peak acceleration, rms acceleration and VDV, when a floor vibration serviceability is evaluated. Meanwhile rms acceleration and peak acceleration are adopted as vibration limit value in criteria and researches of human perception for vibration. Occupants induced floor vibration is transient rather than steady state. However, rms acceleration is not reliable parameter for evaluating transient vibration. The objective of this study is to investigate the characters of human perception level according to acceleration value parameters for vibration induced by heel impacts and walking activities.

두 파라미터 탄성기초를 갖는 테이퍼진 티모센코 보의 진동 및 안정성 (Vibration and Stability of Tapered Timoshenko Beams on Two-Parameter Elastic Foundations)

  • 류봉조;임경빈;윤충섭;류두현
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1075-1082
    • /
    • 2000
  • 본 논문은 이중 탄성기초 위에 놓인 테이퍼진 티모센코 보의 진동과 동적 안정성에 대한 연구로써, 이중 탄성기초는 지반모델에서 흔히 이용되는 분포 Winkler 스프링들과 전단기초층으로 구성된다. 보의 전단변형과 회전관성이 고려되고, 지배방정식은 Halmilton원리를 이용한 에너지 표현식에 의해 유도된다. 고유진동수와 좌굴하중을 구하기 위해 관계되는 고유치 문제를 풀며, 출력을 받는 보의 진동에 대한 수치해석결과들이 제시되는 다른 방법을 사용한 유용한 해의 결과들과 비교된다. 출력을 받고 탄성기초 위에 놓인 테이퍼진 티모센코 보의 고유진동수, 모드 형상, 그리고 임계하중 값들이 다양한 테이퍼 두께의 비, 전단기초 파라미터, Winkler 기초파라미터, 경계조건의 변화에 대해 조사된다.

  • PDF

유한요소모델 개선을 위한 자동화된 매개변수 선정법 : 예제 (An Automated Parameter Selection Procedure for Updating Finite Element Model : Example)

  • Gyeong-Ho, Kim;Youn-sik, Park
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.882-886
    • /
    • 2004
  • In this section, the proposed parameter selection procedure is applied to two example problems, one is the plate example given in section 2.2 and the other is a cover structure of hard disk drive (HDD).

  • PDF

Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.479-493
    • /
    • 2018
  • In this paper nonlocal free vibration analysis of a doubly curved piezoelectric nano shell is studied. First order shear deformation theory and nonlocal elasticity theory is employed to derive governing equations of motion based on Hamilton's principle. The doubly curved piezoelectric nano shell is resting on Pasternak's foundation. A parametric study is presented to investigate the influence of significant parameters such as nonlocal parameter, two radii of curvature, and ratio of radius to thickness on the fundamental frequency of doubly curved piezoelectric nano shell.

개선된 시간영역 해석기법에 의한 동특성 추정 (Determination of Vibration Parameters Using The Improved Time Domain Modal Identification Algorithm)

  • 정범석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권2호
    • /
    • pp.147-154
    • /
    • 1999
  • A new approach to conducting the vibration parameters identification algorithm is proposed. The approach employs the concept of modal amplitude ratio implemented in a mode shape estimation. The accuracy of the improved Ibrahim Time Domain identification algorithm in extracting structural modal parameters from free response functions has been studied using computer simulated data for 9 stations on the two-span continuous beam. Simulated responses from the lumped and distributed parameter system demonstrate that this algorithm produces excellent results, even in the 300% noise response.

  • PDF

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D.
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1125-1143
    • /
    • 2016
  • Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.