• Title/Summary/Keyword: vibration monitoring

Search Result 1,040, Processing Time 0.024 seconds

Fault Detection of Rolling Element Bearing for Low Speed Machine Using Wiener Filter and Shock Pulse Counting (위너 필터와 충격 펄스 카운팅을 이용한 저속 기계용 구름 베어링의 결함 검출)

  • Park, Sung-Taek;Weon, Jong-Il;Park, Sung Bum;Woo, Heung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1227-1236
    • /
    • 2012
  • The low speed machinery faults are usually caused by the bearing failure of the rolling elements. As the life time of the bearing is limited, the condition monitoring of bearing is very important to maintain the continuous operation without failures. A few monitoring techniques using time domain, frequency domain and fuzzy neural network vibration analysis are introduced to detect and diagnose the faults of the low speed machinery. This paper presents a method of fault detection for the rolling element bearing in the low speed machinery using the Wiener filtering and shock pulse counting techniques. Wiener filter is used for noise cancellation and it clearly makes the shock pulse emerge from the time signal with the high level of noise. The shock pulse counting is used to determine the various faults obviously from the shock signal with transient pulses not related with the bearing fault. Machine fault simulator is used for the experimental measurement in order to verify this technique is the powerful tool for the low speed machine compared with the frequency analysis. The test results show that the method proposed is very effective parameter even for the signal with high contaminated noise, speed variation and very low energy. The presented method shows the optimal tool for the condition monitoring purpose to detect the various bearing fault with high accuracy.

Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Yi, Jin-Hak;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.385-403
    • /
    • 2017
  • In recent years, the wind energy has played an increasingly important role in national energy sector of many countries. To harvest more electric power, the wind turbine (WT) tower structure becomes physically larger, which may cause more risks during long-term operation. Associated with the great development of WT projects, the number of accidents related to large-scaled WT has also been increased. Therefore, a structural health monitoring (SHM) system for WT structures is needed to ensure their safety and serviceability during operational time. The objective of this study is to develop a hybrid damage detection method for WT tower structures by measuring vibration and impedance responses. To achieve the objective, the following approaches are implemented. Firstly, a hybrid damage detection scheme which combines vibration-based and impedance-based methods is proposed as a sequential process in three stages. Secondly, a series of vibration and impedance tests are conducted on a lab-scaled model of the WT structure in which a set of bolt-loosening cases is simulated for the segmental joints. Finally, the feasibility of the proposed hybrid damage detection method is experimentally evaluated via its performance during the damage detection process in the tested model.

Vibration Evaluation and Accuracy Improvement for a Digital Pile Rebounding and Penetration Monitoring System (DPRMS) (디지털 항타관리기(DPRMS)의 진동영향 평가 및 측정 정밀도 향상 방안에 관한 연구)

  • Hong, Jung-Taek;Lee, Kye-Young;Lee, Sang-Hun;Han, Song-Soo;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.514-520
    • /
    • 2006
  • In this study, the performance of a digital pile rebounding and penetration monitoring system (DPRMS) is evaluated and the measurement precision of the DPRMS is improved. The DPRMS is a high speed line-scanning camera system to measure the rebound and penetration of a pile in a construction work. A main problem in the DPRMS is a measurement error, which is caused by a shock or vibration due to a hammer impact. The measurement error is investigated by analyzing vibration signals of the DPRMS during the impact. Moreover, the frequency response functions of the DPRMS are also analyzed. As a result, it is found that the tripod height has an influence on the DPRMS performance and a shorter tripod is better. One more founding in this study is that the DPRMS should be placed with a appropriate distance from a pile for improving the measurement precision.

The effects of the ISOTC108SC5 on the Korean industry (국제표준화(ISOTC108SC5 분야)가 국내산업에 미치는 영향)

  • Choi, Byoung-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.544-547
    • /
    • 2009
  • Standardization in the fields of mechanical vibration and shock and the effects of vibration and shock on humans, machines, vehicles (air, sea, land and rail) and stationary structures, and of the condition monitoring of machines and structures, using multidisciplinary approaches.

  • PDF

A Study on the Monitoring of Chatter Vibration Using Pattern Recognition in the Plunge Grinding (원통연삭시 휠속도 변화의 패턴인식을 이용한 채터감시에 관한 연구)

  • 이종열;송지복;곽재섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.28-32
    • /
    • 1995
  • Bacause the chatter vibration is a main factor to damage on the quality and integrity, The cure is required peticurity in cykinderical plunge grinding. The chatter vibration relatied with wheel speed, workpiece and infeed rate. Therefore, we expressed more credible normal signal and chatter signal Pattern in accrdiance with wheel speed and acquired RMS signal of the accelerrometer. In thos study, after finding the chatter pattern, we applied two parameters, standard deviation and Kurtosis, to Neural Network.

  • PDF

Monitoring the Vibration Characteristics of a Rotating Disk (회전원판의 진동 특성 감시)

  • ;Mote, C. D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.438-442
    • /
    • 1996
  • A model testing method to monitor modal characteristics of a rotating disk, such as the mode and its motion relative to the disk, is presented in this paper. It is shown through measurements that this method can be applied to monitor the vibration characteristics of a rotating disk under operating conditions.

  • PDF

Monitoring of Beam-column Joint Using Optical Fiber Sensors (광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측)

  • Kim, Ki-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.3-11
    • /
    • 2005
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplexibility in one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability and dominate the strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.

Monitoring of wind turbine blades for flutter instability

  • Chen, Bei;Hua, Xu G.;Zhang, Zi L.;Basu, Biswajit;Nielsen, Soren R.K.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.115-131
    • /
    • 2017
  • Classical flutter of wind turbine blades indicates a type of aeroelastic instability with fully attached boundary layer where a torsional blade mode couples to a flapwise bending mode, resulting in a mutual rapid growth of the amplitudes. In this paper the monitoring problem of onset of flutter is investigated from a detection point of view. The criterion is stated in terms of the exceeding of a defined envelope process of a specific maximum torsional vibration threshold. At a certain instant of time, a limited part of the previously measured torsional vibration signal at the tip of blade is decomposed through the Empirical Mode Decomposition (EMD) method, and the 1st Intrinsic Mode Function (IMF) is assumed to represent the response in the flutter mode. Next, an envelope time series of the indicated modal response is obtained in terms of a Hilbert transform. Finally, a flutter onset criterion is proposed, based on the indicated envelope process. The proposed online flutter monitoring method provided a practical and direct way to detect onset of flutter during operation. The algorithm has been illustrated by a 907-DOFs aeroelastic model for wind turbines, where the tower and the drive train is modelled by 7 DOFs, and each blade by means of 50 3-D Bernoulli-Euler beam elements.

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반의 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Shim, Min-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.872-878
    • /
    • 2008
  • Many industrial operations require continuous or nearly-continuous operation of machines, interruption of which can result in significant cost loss. The condition monitoring of these machines has received considerable attentions in recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is to develop a new type of smart sensor for on-line condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This system is capable for signal preprocessing task and analog to digital converter which is controlled by CPU. This sensor communicates with a remote site PC using TCP/IP protocols. The developed sensor executes performance tests for data acquisition accuracy estimations.

Fiber Optic Smart Monitoring of Railway Structures (광섬유센서를 이용한 철도구조물의 모니터링)

  • Kim, Ki-Soo;Cho, Sung-Gyu;Kim, Myeong-Se;Kim, Hak-Yeon;Seo, Ki-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.754-760
    • /
    • 2008
  • For monitoring of railway structures, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplicity of one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of railway structures. We expect that the fiber optic sensors have much less noises than electrical strain gauges because of electro-magnetic immunity while railways operate electric power of 22000 volts. Fiber optic sensors showed good durability and long term stability for continuous monitoring of the railway structures as well as good response to the structural behaviors during construction.

  • PDF