• 제목/요약/키워드: vibration isolation effect

검색결과 92건 처리시간 0.023초

원자력발전소 비상디젤발전기의 가동중 진동저감 효과 (Operating Vibration Reduction Effect Evaluation of EDG at the NPP Site)

  • 김민규;전영선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.111-118
    • /
    • 2006
  • The Emergency Diesel Generator(EDG) is a very important piece of equipment for the safety of a Nuclear Power Plant(NPP). In this study, the operating vibration or three kinds or EDG system was measured. The target EDG systems art Yonggwang 5 unit, Ulchin 2 unit and Ulchin 3 unit. The Yonggwang 5 and Ulchin 3 unit EDG system is the same type but the foundation systems are different. One is an anchor bolt type and the other is a spring and viscous-damper type. The purpose of this measurement is for a verification of the vibration isolation effect according to the foundation system. As a result. it can he said that the spring and viscous damper system of the EDG performed well for the vibration isolation.

  • PDF

전자석 액츄에이터에 의한 수동방진 테이블의 제어 (Vibration control of the vibration isolation system using the electromagnetic actuator)

  • 최현;이정윤
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.227-232
    • /
    • 2003
  • As the most precision equipment requiring very strict vibration environment are vulnerable to the surrounding vibration condition, they adapt the passive or active vibration isolation system. When it comes to the passive isolation system, the resonance of the isolation system causes excessive resonance response, and finally results in the degrade the equipment performance. This paper deals with the active control method to control this resonance induced response, and includes the experiment on the active control for controlling the resonance response on the table against the excitation of the same frequency with the natural frequency of the isolation system. The electromagnetic actuator was designed and the control effect was verified by the experiment. The experiment showed that the electromagnetic actuator is effective for controlling the low frequency isolation resonance response of the precision equipment.

  • PDF

Vibration mode decomposition response analysis of large floating roof tank isolation considering swing effect

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.411-417
    • /
    • 2018
  • To solve the seismic response problem of a vertical floating roof tank with base isolation, the floating roof is assumed to experience homogeneous rigid circular plate vibration, where the wave height of the vibration is linearly distributed along the radius, starting from the theory of fluid velocity potential; the potential function of the liquid movement and the corresponding theoretical expression of the base shear, overturning the moment, are then established. According to the equivalent principle of the shear and moment, a simplified mechanical model of a base isolation tank with a swinging effect is established, along with a motion equation of a vertical storage tank isolation system that considers the swinging effect based on the energy principle. At the same time, taking a 150,000 m 3 large-scale storage tank as an example, a numerical analysis of the dampening effect was conducted using a vibration mode decomposition response spectrum method, and a comparative analysis with a simplified mechanical model with no swinging effect was applied.

초정밀 가공장비의 진동절연용 크레들 설계 (Design of the Cradle for the Improvement of Efficiency of Vibration Isolation of a Precision Machinery)

  • 홍석인;장한기;김호상;이대희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.954-954
    • /
    • 2005
  • In this study new vibration isolation system was designed so as to decouple translational motion and rotational motion of a workstation as well as to maximize an efficiency of vibration isolation. Whole motion of the workstation as well as the transmitted vibration from the floor were compared at the two conditions; with and without the cradle system. It was shown that the cradle system had a clear effect to suppress the roiling motion of the workstation.

  • PDF

수치적 시뮬레이션과 충격 시험을 통한 수직방향 진동절연 완충기 설계 및 성능 평가 (Design and Performance Evaluation of the Vibration Absorber of Vertical Direction Using Numerical Simulation and Shock Test)

  • 박상길;방승우;권오철;이정윤;오재응
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.558-563
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc' spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock Isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing $h_o/t$ ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

수치 모델링과 충격 시험을 통한 수직방향 진동절연 완충기의 성능 평가 (Performance Evaluation of the Vibration Absorber of Vertical Direction using Numerical Modeling and Shock Test)

  • 박상길;방승우;권오철;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.990-993
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc'spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing ho/t ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

  • PDF

바닥충격음 방지재의 재료강성 효과 (Effect of the Stiffness on the Performance of Impact Noise Isolation Pads of a Floor)

  • 이동훈;황윤;강문;김민배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.425-430
    • /
    • 2000
  • This paper describes the effect of the pad stiffness on the noise reduction of impact noise isolation pads of a floor. And also a new semi-experimental method for measuring the impact noise isolation capability of a pad is introduced. The impact noise isolation pads made of wire-mesh, urethane-chip and foam rubber are used for measuring the stiffness, the vibrational insulation performance and the impact noise isolation capability. The correlation between the stiffness and impact noise isolation capability of pads is theoretically reviewed, and confirmed from the experimental results. For measuring the impact noise isolation capability of only an isolation pad, a semi-experimental method proposed in this study is more effective than the reverberation room method.

  • PDF

자기 변형 작동기를 이용한 진동 절연 시스템 (The vibration isolating system using a magnetostrictive actuator)

  • 정학근;박기환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.276-279
    • /
    • 1997
  • When a magnetostrictive material is exposed to a magnetic field, its geometry changes due to a magnetostrictive effect. The magnetostriction is analogous to the piezoeletricity. The displacement of the magnetostrictive material is proportional to the applied current while that of the piezoelectric material is proportional to the voltage. A magnetostrictive material generates large displacement and higher compressive force compared with a piezoeletric material. These advantages provide a good performance of a vibration isolation of a platform. In this work, it is applied to a driving actuator for vibration isolation of a platform. The properties of a magnetostrictive material are investigated in terms of hysteresis and displacement vs. applied current for a various preload. Modeling of the displacement of the vibration isolating actuator is performed as it behaves as a flow source. A sliding mode controller is designed to demonstrate the ability of the magnetostrictive actuator to reduce the vibration at the platform. The effectiveness of the proposed scheme is demonstrated through experimental works. The experimental results of the vibration of the platform axe presented in terms of time response and frequency response.

  • PDF

지진시 저층건물 면진구조의 동적 거동해석 (Dynamic Analysis of Base-Isolated Low-level Structures Under Earthquake Excitation)

  • 문병영;강경주;강범수;김계수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.448-453
    • /
    • 2001
  • This paper presents an analytical evaluation of the effect of motion on seismic responses of base isolated low-level building and experimental studies to evaluate isolation performances of a rubber bearing. Dynamic responses induced by earthquake were evaluated by response analyses, taking the rubber bearing of the base isolation devices into account. In the experiment, vibration tests were carried out using a model for rubber bearings as isolation devices against earthquake in order to investigate the isolation performances of the rubber bearings. Several kinds of rubber bearing for base isolated low-level building against earthquake are examined. As a result, it is shown that the effect of the motion on the response of the building and the base response is well controlled from a seismic design standpoint.

  • PDF

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.