• Title/Summary/Keyword: vibration effect

Search Result 3,861, Processing Time 0.032 seconds

Natural Vibration Characteristics of Accelerometer (가속도 계측 센서의 고유진동 특성 분석)

  • Kim, Seung-Ki;Kwak, Moon K.;Yang, Dong-Ho;Yang, Dong-Yuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.922-924
    • /
    • 2014
  • This paper is concerned with the analysis of natural vibration characteristics of an accelerometer used in power plant. The malfunction of the accelerometer in high-temperature environment may produce erroneous sensor signal and the erroneous signal may cause unpredicted accidents in power plants. Hence, the accelerometer which endures high temperature needs to be developed. In this study, the natural vibration characteristics of the accelerometer were investigated prior to the development of the high-temperature accelerometer. The main mechanical part of the accelerometer is a spiral spring. In this study, the dynamic characteristics of the spiral spring were investigated first by using a commercial finite element code. Numerical results show that the thickness of the spiral spring affects the dynamic characteristics. Numerical investigation on the effect of temperature on the performance of the accelerometer will follow.

  • PDF

Analysis of Correlation with Evaluation Methods of Ride Comfort for the Railway (철도 승차감 평가방법의 상호관계 분석)

  • 김영국;박찬경;이은호;박태원;배대성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.204-212
    • /
    • 2002
  • The ride comfort is one of the important dynamic performances of railway vehicle and is affected by the various factors, such as vibration, sound, temperature, humidity, etc. In general, vibration is known to be a major effect of rode comfort. There are many studies on the evaluation methods of ride comfort in the railway vehicle vibration. Each of the evaluation methods suggested by Spelling and in the standards recommends a different evaluation method and guidance. So users must review whether they can apply it to their railway system or not. In this study, we have suggested the relationship between several evaluation methods using the statistical vibration model based on the experimental data.

Sensor Placement in Structural Vibration Control For the Performance of Modal Filter (모달필터 성능을 고려한 센서의 최적위치)

  • 황재혁;김준수;백승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.308-315
    • /
    • 1997
  • In this study, the effect of modal filter error on the vibration control characteristics of flexible structures is analyzed for IMSC(Independent Modal Space Control), and optimal sensor placement in the structural vibration control with consideration of performance of modal filter has been studied. An Lyapunov asymptotic stability condition has been derived, which depends on the magnitude of the modal filter errors. The extent of the response deviation of the closed-loop system is also derived and evaluated using operator techniques. A sensor placement technique has also been suggested to maximize the performance of the modal filter. It has been found by a series of simulation that the suggested sensor placement technique is very effective on the determination of the number and placement of sensors of modal filter in the structural vibration control.

  • PDF

Natural Vibration Characteristics of Cantilever Plate Partially Submerged into Water (수중에 부분 몰수된 외팔보의 고유진동 특성)

  • Kwak, Moon K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.229-230
    • /
    • 2012
  • The free flexural vibration of a cantilever plate partially submerged in a fluid is investigated. The fluid is assumed to be inviscid and irrotational. The virtual mass matrix is derived by solving the boundary-value problem related to the fluid motion using elliptical coordinates. The introduction of the elliptical coordinates naturally leads to the use of the Mathieu function. Hence, the virtual mass matrix which reflects the effect of the fluid on the natural vibration characteristics is expressed in analytical form in terms of the Mathieu functions. The virtual mass matrix is then combined with the dynamic model of a thin rectangular plate obtained by using the Rayleigh-Ritz method. This combination is used to analyze the natural vibration characteristics of a partially submerged cantilever plate qualitatively. Also, the non-dimensionalized added virtual mass incremental factors for a partially submerged cantilever plate are presented to facilitate the easy estimation of natural frequencies of a partially submerged cantilever plate. The numerical results validate the proposed approach.

  • PDF

Numerical Analysis of Vibration Characteristics in Deep Water Tank (수치해석에 의한 심수 탱크구조물의 진동에 관한 연구)

  • 배성용;홍봉기;배동명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1079-1084
    • /
    • 2003
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks ill contact with fluid near engine or propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. In the previous report, we have developed numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present report, using the numerical analysis, vibrations characteristics in deep water tank are investigated and discussed.

  • PDF

A Study on the Anti-Vibration Characteristics of the Under Sleeper Pad (방진침목패드의 방진특성에 관한 연구)

  • 황선근;엄기영;고태훈;오상덕
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.369-374
    • /
    • 2001
  • It was estimated that the anti-vibration measures at the source location of railroad are the most active and effective ones. Among CWR(Continuously Welded Rail), elastic rail fastener, floating slab, ballast mat, under sleeper pad, etc. like these various kinds of measures in the source, under sleeper pad as an anti-vibration measure was constructed at the railroad track supporting structures in the Jeon-la Line. In this study, through the field measurement of vibration at the railroad track supporting structures and nearby the ground, the vibration reduction effect of under sleeper pad were evaluated by insertion loss. As a result, vibration reduction effects were 5.0∼12.5㏈ on the concrete slab of the bridge, 3.9∼7.5㏈ on the ground nearby the bridge respectively.

  • PDF

Correlation Analysis for Electormagnetic Vibration Source and RMF of Small IPMSM (소형 IPMSM의 전자기적 진동원과 가진력의 상관관계 분석)

  • Lee, Won-Sik;Cho, Gyu-Won;Jun, Byung-Kil;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1986-1991
    • /
    • 2016
  • The vibration soucre of motor has a electromagnetic and mechanical causes. The most widely known, electromagnetic reasons are cogging torque and RMF(Radial magnetic force). Recently, analysis of the cogging torque has been made actively. but analysis of the RMF was not filled. So, in this paper, analyzed RMF. the vibration test were performed for the basic and reduced model of cogging torque and RMF. And it analyzed for the effect of each factor on the vibration. Finally, the vibration was formulated for stator's weight and RMF. To this end, natural, cogging torque and RMF of frequency were analyzed and these relationships were considered.

A Study on the Vertical, Horizontal and Torsional Vibration of Ship(1st Report) (배의 상하(上下), 수평(水平) 및 비틂진동(振動)에 관(關)하여(제1보)(第1報) -Box형(型) Barge의 상하진동(上下振動)에 대(對)하여-)

  • Sa-Soo,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 1971
  • This paper describes, firstly, on analytical method of computing the eigenvalues of vertical vibration of ships, taking into account for the distribution of hull weight including added mass and the effect of shear deflection and rotary inertia. The frequency equation is solved by Galerkins method into form of numerical integration. Applying the above described equation, model experiment of vertical vibration was carried out in order to varify the validity of the analytical method of vertical vibration. The model, which was made of acrylite plate, was ship-shaped wall-sided vessel with bulkheads, deck openings, and fore and after peak tank at both ends. The results of experiments carried out both in air and on water showed that the observed natural frequencies and the observed patterns of natural modes of vibration were in good agreement with analytically calculated values for 2,3, and 4-node vibration.

  • PDF

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.

Study on the Vibration Reduction Characteristics of Floating Floors Used in Railway Vehicles (철도차량에서 사용하는 부유상구조의 진동절연특성에 관한 연구)

  • Woo, Kwan-Je;Park, Hee-Jun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.305-309
    • /
    • 2006
  • In this paper vibration reduction characteristics of floating floors used in railway vehicles are studied. Vibration reduction characteristics are compared through a series of tests for elastically-coupled floor and rigidly-coupled floor. It was found that elastically-coupled floor has larger vibration reduction amount than rigidly-coupled floor. Around the fundamental natural frequency, however, elastic floor has poor vibration reduction effect than rigid floor. Measures to reduce structure-borne noise are also discussed based on the test results. Structure-borne noise for running railway vehicles cannot be reduced by an effort to deviate resonance between natural frequency of floors and major exciting forces. Instead, reducing vibration level of top floor and using covers which have low sound radiation coefficient will be effective for reducing structure-borne noise.

  • PDF