• Title/Summary/Keyword: vibration and loss factor analysis

Search Result 85, Processing Time 0.032 seconds

A Study on the Characteristics of Coupling Loss factor Associated with Fluid Loading (접수 구조물의 연성손실계수 변화에 관한 연구)

  • 류정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2000
  • Statistical Energy Analysis(SEA) is an efficient tool to predict the broadband noise and vibration for the huge and complex structures such as aircraft and ships. To estimate the noise and vibration by using SEA accurately, the characteristics of SEA parameters associated with fluid loading have to be investigated. In this report, the fluid loaded coupling loss factors were calculated for an 'L' and 'T' type line connections and compared to the ones without fluid loading. Then, the vibration levels for steel box model with 'L' and 'T' type line connection were computed using the fluid loaded and no fluid loaded coupling loss factors, respectively. As a result, the calculated vibration levels of the model using the fluid loaded coupling loss factors were lower than those without fluid loading. As a conclusion, it is necessary to use the fluid loaded coupling loss factors for increasing the prediction accuracy on the noise and vibration of immersed structures.

  • PDF

Experimental Analysis of Power Transmission and Reflection In a Coupled Plate (연성평판에서의 파워투과 및 반사 특성 실험 해석)

  • Lee, Y.H.;Kil, H.G.;Lee, H.H.;Lee, K.H.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.170-173
    • /
    • 2005
  • The objective of this paper is to perform measurements of power transmission and reflection coefficients in a coupled plate. The coupled plate has been divided into 2 subsystems. The out-of-plane vibration has been only considered with assumption of relatively small in-plane vibration. The coupling loss factors have been measured with consideration of the power balance condition. The power transmission and reflection coefficients has been estimated from the measured values of the coupling loss factors. The measured power transmission and reflection coefficients have been compared with the corresponding theoretical coefficients in a semi-infinite coupled plate.

  • PDF

Experimental Study on Power Flow Analysis of Vibration of an Automobile Door (자동차 도어 진동의 파워흐름해석에 대한 실험적 연구)

  • Kil, H.G.;Lee, Y.H.;Lee, G.H.;Hwang, S.G.;Hong, S.Y.;Park, Y.H.;Seo, J.K.;Chae, G.S.;Seo, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.782-785
    • /
    • 2006
  • The Power Flow Analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency range. In this paper, Power Flow Finite Element Method (PFFEM) based on PFA has been used to predict the vibration of an automobile door. The predicted results for the frequency response function of the door have been compared with corresponding experimental results. In the experiment, the automobile door has been divided into several subsystems and the loss factor of each subsystem has been measured. The input mobility at a source point has been also measured. The data for the loss factors and the input mobility have been used as the input data to predict the vibration of the automobile door with PFFEM. The frequency response functions have been measured over the surface of the door. The comparison between the experimental results and the predicted results for the frequency response functions showed that PFFEM could be an effective tool to predict the structural vibration.

  • PDF

Finite element vibration and damping analysis of a partially covered cantilever beam

  • Yaman, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.141-151
    • /
    • 2005
  • There are several ways of decreasing the vibration energy of structures. One of which is special damping layers made of various viscoelastic materials are widely applied in structures subjected to dynamic loading. In this study, a cantilever beam, partially covered by damping a constraining layers, is investigated by using Finite Element method (FEM). The frequency and system loss factor are evaluated. The effects of different physical and geometrical parameters on the natural frequency and system loss factors are discussed.

Spray Deadener Application for Reduction of Vehicle NVH (스프레이 제진재에 의한 승용차 소음진동 저감)

  • 이종규;허덕재;조영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1150-1155
    • /
    • 2001
  • Vehicle Manufacturers use asphalt deadener sheets for their passenger cars to reduce noise and vibration from engine and road surface. Since their shapes are limited to a few variations, it is very difficult to reduce unnecessary weight by changing the shape of the deadeners. There is also damping performance limit in the asphalt sheets. Therefore, a high damping material should be implemented into the vehicle noise and vibration reduction activities to overcome the disadvantage of asphalt sheets. In this study, measurement of the damping loss factor and sound transmission loss were made to compare the properties and vehicle test and analysis was followed to evaluate the NVH performance of each deadener type in the vehicle.

  • PDF

Study on the Analysis Process of the Damping Material for Reduced Floor Vibration (플로워 진동 저감을 위한 제진재 해석 프로세스 연구)

  • Kim, Ki-Chang;Hwang, Mi-Kyong;Seo, Seong-Hoon;Choi, Ja-Min;Kim, Chan-Mook;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.333-338
    • /
    • 2011
  • This paper describes the design process of floor damping material optimization to reduce structure borne noise. This process uses finite element analysis(FEA) along with experimental techniques to complement each other. The objective of this approach was to develop an optimized damping material application layout and thickness at the initial design stage. The first step is to find the sensitivity areas of vehicle body without damping material applied using FEA. In order to determine the high vibration areas of the floor panel, the velocity was measured using a scanning laser vibrometer from 20 Hz to 300 Hz. To excite the floor panel vibration, shaker was placed at the front suspension attachment point. The second step is the optimization process to determine the light weight solution of damping material. The design guideline of damping material was suggested that the lightweight solution was verified using test result of road noise. Design engineer could efficiently decide the design variable of damping material using parameter analysis results in early design stage.

Analysis of Correlation between the Vibration Transmissions and the Dynamic Characteristics for Floor Impact Sound Insulation Materials through Model Test (모의실험을 통한 완충재별 진동전달량과 동적특성과의 상관성 분석에 관한 연구)

  • Kim, Heung-Sik;Joo, Si-Woong;Jin, Pil-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1425-1431
    • /
    • 2006
  • In this study, An analysis of correlation between the vibration transmissions and the dynamic characteristics for floor impact sound insulation materials through model test was carried out. As the results, the correlation coefficients between the vibration transmissions and the dynamic characteristics for floor impact sound insulation materials were over 0.8 at the heavy and light floor impact source and less dynamic stiffness was more effective in reducing the vibration transmission.

  • PDF

A Study on the Dynamic Test of Viscoelastic Material (점탄성재료의 동적 특성 측정에 관한 연구)

  • Choi, Hyun;Park, Kun-Rok;Kim, Doo-Hun;Lee, Sang-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.35-41
    • /
    • 1997
  • Viscoelastic materials shows the characteristics of elasticity and viscosity. Unlike metals which show negligible damping value, the damping characteristics of viscoelastic materials like rubber mounts is very important in the analysis of the dynamic system. So there has been a great interest in measuring the damping characteristics of viscoelastic materials. There are two kinds of methods which the damping characteristics can be measured. One is the resonant method where loss factor can be measured only in the resonant frequency. The other is the nonresonant method which is characterized by the impedance method are introduced. The impedance test results, the loss factor by the impedance method are compared to the results of the resonant method and recommendations in the experimental setup are suggested.

  • PDF

Vibration Power Flow Analysis of Coupled Co-planar Rectangular Plates (동일 평면상에서 연성된 직사각형 평판의 진동파워흐름해석)

  • 박도현;홍석윤;길현권
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1053-1061
    • /
    • 1998
  • In this paper. the power flow analysis(PFA) method is applied to the prediction of the vibrational energy density and intensity of coupled co-planar plates. To cover the energy transmission and reflection at the joint of the plates. the wave transmission approach is Introduced with the assumption that all the incident waves are normal to the joint. By changing the frequency ranges and internal loss factors. we have obtained the reliable PFA results. and compared them with the analytical exact solutions.

  • PDF

Vibration and Damping Characteristics of Viscoelastically Damped Sandwich Plates (점탄성층이 샌드위치된 복합적층판의 진동감쇠 특성)

  • 김재호;박태학;신현정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2252-2263
    • /
    • 1993
  • The purpose of this study is to verify the vibration and damping characteristics of elastic-viscoelastic-elastic structures, theoretically and experimentally. The forth-order differential equations of motion are derived for the transverse vibration of three-layered plates with viscoelastic core layer. The equations consider both transverse displacements of the constraining layer and the bare base plate as variable and account for the effect of the transverse normal strain and the shear strain of viscoelastic core layer on the vibration of the plates. Finite difference analysis of the equations and experimental measurements are performed on the three-layered plates of completely free boundary condition. Comparative investigations on the theory and the results of direct frequency analysis of NASTRAN are carried out on the same structures.