• Title/Summary/Keyword: viability decrease

Search Result 514, Processing Time 0.024 seconds

In situ Recovery of hCTLA4Ig from Suspension Cell Cultures of Oryza sativa (형질전환 벼 현탁세포 배양에서 hCTLA4Ig의 in situ 회수)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Yun, Boreum;Hong, Seok-Mi;Kim, Sun-Dal;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.284-290
    • /
    • 2016
  • In this research, recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) was produced by transgenic rice cells. RAmy3D promoter was used for overcome the limitation of low expression level in transgenic plant cells, and the secretion of target protein was accomplished by signal peptide. However, the RAmy3D promoter system which can be induced only by sugar starvation causes the decrease of cell viability. As a result, cell death promotes the release of protease which degrades the target proteins. The protein stability and productivity can be significantly influenced by proteolysis activity. Therefore, development of new strategies are necessary for the in situ recovery of target proteins from cell culture media. In this study, in situ recovery was performed by various strategies. Direct addition of Protein A resin with nylon bag leads to cell death by increased shear stress and decrease in production of hCTLA4Ig by protease. Medium exchange through modified flask could recover hCTLA4Ig with high cell viability and low protease activity, on the other hand, the productivity was lower than that of control. When in situ recovery was conducted at day 7 after induction in air-lift bioreactor, 1.94-fold of hCTLA4Ig could be recovered compared to control culture without in situ recovery. Consequently, in situ recovery of hCTLA4Ig from transgenic rice cell culture could enhance productivity significantly and prevent degradation of target proteins effectively.

Effects of Angelicae Pubescentis Radix Water Extract on Immune Property in RAW 264.7 Macrophages (독활 물 추출물이 대식세포 면역 활성에 미치는 영향)

  • Lee, Jong-Han;Kim, Yoon-Sang;Lim, Eun-Mee
    • The Journal of Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.175-184
    • /
    • 2011
  • Objectives: The purpose of this study was to investigate the effects of Angelicae pubescentis Radix water extract (ACE) on immune properties in macrophage cells. Methods: The cells were divided into two groups: As a control, the first was not treated with ACE, and the other was treated with ACE. Together with the cell viability, productions of nitric oxide (NO) and cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ by treating of ACE were monitored. Results: 1. There was no decrease of the cell viability after 24 hr incubation, but a significant decrease after 48 hr incubation with all four concentrations (25, 100, 200, and $400\;{\mu}g/m{\ell}$) of ACE. 2. A significant increase in the production of NO was observed in the concentrations above $50\;{\mu}g/m{\ell}$ of ACE after 24 hr incubation. 3. Further, after 48 hr incubation, the critical concentration of ACE for the increase was reduced to $25\;{\mu}g/m{\ell}$. 4. The production of (IL)-$1{\beta}$ significantly increased with the ACE concentrations of 100 and $200\;{\mu}g/m{\ell}$ after 24 hr incubation. 5. The production of IL-6 significantly increased with the ACE concentration of $200\;{\mu}g/m{\ell}$ after 24 hr incubation. 6. A significant increase in the production of (TNF)-${\alpha}$ was detected with ACE concentrations of 50, 100, and $200\;{\mu}g/m{\ell}$ after 24 hr incubation. Conclusions: These show that ACE increases mouse macrophage NO production at concentrations above $50\;{\mu}g/m{\ell}$, and the cytokines ((IL)-$1{\beta}$, IL-6, and (TNF)-${\alpha}$) at concentrations above $200\;{\mu}g/m{\ell}$. These results suggest that ACE improves macrophage immune property.

Porphyra tenera induces apoptosis of oral cancer cells (구강암 세포주에서 김 추출물에 의한 세포자멸사 유도)

  • Kim, Sang Chan;Lee, Jong Rok;Park, Sook Jahr
    • The Korea Journal of Herbology
    • /
    • v.30 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • Objectives : Laver (Porphyra tenera), a red algae species, is one of the most widely consumed edible seaweed in Korea. Laver contains various substances such as essential amino acid, fiber, minerals and polyphenols that benefit human health. In the present study, we prepared ethanol extracts from commercially processed product of Porphyra tenera, and evaluated the growth inhibitory effect against human oral squamous carcinoma YD-10B cells. Methods : Cell viability was measured by MTT assay. Apoptosis was confirmed by TUNEL assay and flow cytometry with the green fluorescent dye FITC annexin V entering apoptotic cells and the red fluorescent dye PI not entering. The expression of the relevant proteins was detected using Western blot. Results : Ethanol extracts of Porphyra tenera (PTE, $50-200{\mu}g/m{\ell}$) caused a significant decrease of cell viability in a dose dependant manner. The cell death occurred as a result of apoptotic process as determined by TUNEL assay and flow cytometric analysis. In line with this observation, decrease in procaspase proteins and increase in cytosolic cytochrome c were observed in cells treated with PTE. In addition, exposure to PTE decreased the expression levels of Bcl-2, and induced PARP cleavage and AIF translocation from mitochondria to nucleus. Conclusions : In conclusion, PTE exerts anti-cancer effects by inducing apoptosis via caspase activation and AIF nuclear translocation in YD-10B cells. These results provide evidence for the possible therapeutic effect of Porphyra tenera in oral cancer cells.

Effect of Salviae Multiorrhizae Radix on the Vasculotoxicity induced by glucose oxidase in cultured Pumonary Endotherial cells (Glucose Oxidase에 의해서 손상된 혈관내피세포에 대한 단삼의 영향)

  • Bak Sang Myeon;Lee Joung Hwa;Yang Hyun Woong;Lee Kang Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.136-139
    • /
    • 2003
  • Cytotoxicity of glucose oxidase(GO) and cardioprotective effect of Salviae Multiorrhizae Radix(SMR) against GO-induced cardiotoxicity were measured for evaluation of cardiotoxicity on cultured mouse pulmonary endotherial cells(PEC) by MTT assay after PEC were cultured for 8 hours at various concentrations of GO. GO was toxic in a time and dose-dependent manner on cultured PEC after PEC were grown for 8 hours in media containing 1~60mU/ml GO. While, cultures were pretreated with 60 μg/ml SMR for 2 hours increased remarkably cell viability. From the above results, it is suggested that GO is toxic on cultured PEC by the decrease of cell viability, and herb medicine such as SMR is very effective in the prevention of vascular toxicity induced by GO.

Protective Effect of Cordyceps sinensis Extract on Cytokine-induced Cytotoxicity of Pancreatic ${\beta}-cells$ (싸이토카인에 의한 췌장 ${\beta}$세포 독성에 대한 동충하초(冬蟲夏草) 추출물의 보호 효과)

  • Song, Je-Ho;Park, Byung-Hyun;Ryu, Do-Gon;Kwon, Kang-Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.791-795
    • /
    • 2008
  • In the present study, Cordyceps sinensis extract (CSE) was evaluated to determine if it could protect pancreatic ${\beta}$ cells against cytokine-induced cytotoxicity of RINm5F cells. Treatment of cells with cytokines resulted in a decrease of viability, which was caused by increase of nitric oxide (NO) production. CSE protected cytokine-mediated viability reduction in a concentration-dependent manner. Incubation with CSE also induced a significant suppression of cytokine-induced inducible nitric oxide synthase (iNOS) protein and NO production. The molecular mechanism by which CSE inhibited iNOS protein expression appeared to involve the inhibition of $NF-{\kappa}B$ activation. The cytokine-stimulated RIN cells showed increases in $NF-{\kappa}B$ binding activity compared to unstimulated cells. However, pretreatment with CSE inhibited cytokines-induced $NF-{\kappa}B$ activation in RINm5F cells.

A Comparison between Pellet and Straw Methods in Canine Semen Freezing (개 정액의 정제화동결법과 Straw 동결법에 관한 비교실험)

  • Lee Jung-Won;Kim Heui-Eun;Kim Nam-Soo;Choi In-Hyuk
    • Journal of Veterinary Clinics
    • /
    • v.8 no.2
    • /
    • pp.183-190
    • /
    • 1991
  • Pellet and straw methods in canine semen freezing are compared with respect to motility, viability and acrosome demage of sperm during each of the two major processing steps, to prior-freezing and to frozen-thawing. Senen was extended with a tris-buffered egg yolk contained 4% glycero1 Pellet freezing in the hole of dry ice and straw freezing on the surface of liquid nitrogen were carried out, respectively. The frozen semen 10 days after storage in liquid nitrogen container. wao thawed. In the comparison of two freezing methods, the straw freezing method with 42.7% in motility. 49.2% in viability and 0.186 acrosome score after thawing seems to be superior to the pellet freezing method with 31.2%, 34.5% and 0.314%, respectively. Sperm motility of processing step to frozen-thawing against decrease rate 12.67% to Prior freezing appeared of 33.84% and 49.37% in straw and pellet freezing and increase of 0.02 in acrsomal score to prior freezing appeared of 0.08 and 0.21 in straw and pellet freezing method to frozen-thawing

  • PDF

Protective Effects of Fermented Soymilk Extract on High Glucose-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Yi, Na-Ri;Park, Min-Jung;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • We investigated whether the fermented soymilk extract (FSE) has protective effects against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs). FSE was prepared via fermentation of soymilk with Bacillus subtilis followed by methanol extraction. To determine the protective effect of FSE, oxidative stress was induced by exposing of HUVECs to the high glucose (30 mM) for 48 hr. Exposure of HUVECs to high glucose for 48 hr resulted in a significant (p<0.05) decrease in cell viability, catalase, SOD and GSH-px activity and a significant (p<0.05) increase in intracellular ROS level and thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5.5 mM glucose. However, at concentration of 0.1 mg/mL, FSE treatment decreased intracellular ROS level and TBARS formation, and increased cell viability and activities of antioxidant enzymes including catalase, SOD and GSH-px in high glucose pretreated HUVEC. These results suggest that FSE may be able to protect HUVECs from high glucose-induced oxidative stress, partially through the antioxidative defense systems.

The Apoptosis-inducing Effect of Radix Aconiti Extract in HepG2 Human Hepatoma Cells (HepG2 간암세포에 대한 부자 추출물의 고사 유도 효과)

  • 권강범;김은경;정은실;심정섭;김강산;신병철;송용선;류도곤
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.33-40
    • /
    • 2004
  • Objective : This study investigated the apoptotic effect and its mechanism of Radix Aconiti (RA) extract and aconitine, which is a major constituent of RA, in HepG2 human hepatoma cells. Methods : We used MTT and DNA fragmentation assay to investigate cell viability and apoptotic effect on RA extract-treated HepG2 cells. In addition, to clarify the mechanism of RA extract-induced apoptosis, we applied caspase-3 enzyme activity assay and Western blotting method on poly-(ADP-ribose) polymerase (PARP) protein expression. Results : Treatment with RA extract resulted in the decrease of cell viability, and this effect was caused from apoptosis as confirmed by discontinuous fragmentation of DNA in HepG2 cells, but aconitine did not. Also, RA extract-treated HepG2 cells induced the activation of caspase-3 enzyme activity in time- and dose-dependent manners, which was accompanied by the cleavage of 116 kD PARP to 85 kD product. Conclusions : These results suggest that the apoptotic effects of RA extract on HepG2 cells could not be explained by aconitine. Additionally, RA extract induced apoptosis in hepatoma cells through caspase-3 activation and subsequent PARP cleavage.

  • PDF

Induction of Apoptosis by Bile Acids in HepG2 Human Hepatocellular Carcinoma Cells

  • Baek, Jin-Hyen;Kim, Jung-Ae;Kang, Chang-Mo;Lee, Yong-Soo;Kim, Kyu-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.107-115
    • /
    • 1997
  • We studied the effects of bile acids on the induction ofapoptosis in HepG2 human hepatocellular carcinoma cells. Treatment with either ursodeoxycholic acid (UDCA) or lithocholic acid (LCA) resulted in a dose- and time-dependent decrease in cell viability assessed by MTT assay. Both UDCA and LCA also induced genomic DNA fragmentation, a hallmark of apoptosis, indicating that the mechanism by which these bile acids induce cell death was through apoptosis. Cycloheximide, a protein synthesis inhibitor, blocked the apoptosis induced by these bile acids, implying that new protein synthesis may be required for the apoptosis. Intracellular $Ca^{2+}$ release blockers (dantrolene and 3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester) inhibited decreased cell viability and DNA fragmentation induced by these bile acids. Treatment of HepG2 cells with calcium ionophore A23l87 induced DNA fragmentation. These results suggest that UDCA and LCA induce apoptosis in the HepG2 cells and that the activation of intracellular $Ca^{2+}$ signals may play an important role in the apoptosis induced by these bile acids.

  • PDF

Anti-Oxidative and Anti-Inflammatory Effects of QGC in Cultured Feline Esophageal Epithelial Cells

  • Lee, Myeong Jae;Song, Hyun Ju;Jeong, Jun Yeong;Park, Sun Young;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.81-87
    • /
    • 2013
  • Quercetin-3-O-${\beta}$-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus Herba. In the present study, anti-oxidative and anti-inflammatory effects of QGC were tested in vitro. Epithelial cells obtained from cat esophagus were cultured. When the cells were exposed to acid for 2 h, cell viability was decreased to 36%. Pretreatment with 50 ${\mu}M$ QGC for 2 h prevented the reduction in cell viability. QGC also inhibited the productions of intracellular ROS by inflammatory inducers such as acid, lipopolysaccharide, indomethacin and ethanol. QGC significantly increased the activities of superoxide dismutase (SOD) and catalase, and also induced the expression of SOD2, while it restored the decrease of catalase expression in cells exposed to acid. QGC inhibited NF-${\kappa}B$ translocation, cyclooxygenase-2 expression and $PGE_2$ secretion in cells exposed to acid, which plays an important role in the pathogenesis of esophagitis. The data suggest that QGC may well be one of the promising substances to attenuate oxidative epithelial cell injury and inflammatory signaling in esophagus inflammation.