• Title/Summary/Keyword: vessel pressure

Search Result 1,355, Processing Time 0.03 seconds

Effect of Prostaglandin $E_1$ on Cutaneous Microcirculation of Flap or Replantation

  • Nakanishi, Hideki;Hashimoto, Ichiro;Tanaka, Shinji
    • Archives of Reconstructive Microsurgery
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • Recently prostaglandin $E_1(PGE_1)$ has been shown to ensure flap survival by producing vasodilation of the peripheral vessels and platelet disaggreation. However, direct observation and detailed quantitative studies of the effects of $PGE_1$ on the cutaneous microcirculation have not been reported. In the present study, we investigated cutaneous microcirculatory changes in the rabbit ear chamber(REC) with an intravital microscope following intravenous administration of $PGE_1$. The results obtained in this study indicate that $PGE_1$ administered intravenously at a rate of 200ng/kg/min might act directly on the vessels and cause dilatation of metarterioles and capillaries without affecting vasomotion and systemic blood pressure. Clinically in order to evaluate the effect of an intravenous administration of $PGE_1$ on the cutaneous microcirculation, cutaneous blood flow, skin temperature and transcutaneous $Po_2$ in the pedicle or free flap of operated patients were evaluated by the combination of several measurements following the administration of $PGE_1$. The present study suggests that improvement of cutaneous microcirculation by $PGE_1$ may enhance the survival rate of flap or replantation. Both vessel arterial ischemia and venous congestion are main factors of tissue necrosis in the flap surgery. Vasodilatory or antithrombotic agents have been used in salvage of flap necrosis. However, the therapeutic effects of those drugs are still not well elucidated. Recently prostaglandin $E_1(PGE_1)$ has been shown to ensure flap survival by producing vasodilatation of the peripheral vessels and platelet disaggregation[1-3]. Emerson and sykes[4] have obtained significant improvement in the flap survival in the rat using $PGI_2$. Suzuki et al.[5] have reported prolonged flap survival length by using $PGE_1$ in the rabbit and concluded that $PGE_1$ improved the microcircuration in the flap. However, direct observation and detailed quantitative studies of the effects of $PGE_1$ on the cutaneous microcirculation have not been reported. In the present study, we investigated microcirculatory changes in the rabbit ear chamber[6,7] with an intravital microscope following intravenous administration of $PGE_1$.

  • PDF

Analysis of Burnable Poison Effect on Power Distribution using Power Sensitivity Coefficient Concept (출력민감도 계수개념을 이용한 가연성 독붕봉이 출력분포에 미치는 영 향의 분석)

  • Yi, Yu-Han;Oh, Soo-Youl;Seong, Seung-Hwan;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 1988
  • The low leakage leading pattern has features as the placement of some fresh fuel assemblies in the core interior to reduce the neutron fluence on the pressure vessel and to enhance the neutron economics. But as fresh fuel assemblies are loaded in the core interior, the local power tends to exceed safety limit due to the high reactivity of the fresh assemblies. Therefore, a large number of burnable poisons must be utilized in a low leakage scheme to suppress the high assembly power as well as the excess reactivity. In this study the effects of burnable poisons are treated as a perturbation on the power distribution, and the 'Power Sensitivity Coefficient' concept is adopted. An application study is performed for cycle 1 of the Korea Nuclear Unit-7 (KNU-7) to justify the usefulness of the reverse depletion method coupled with the above concept. To obtain the optimal burnable poision distribution at the given burnup step, the linear programming technique is adopted. The result shows maximum 4.5% error in the amount of burnable poisons between the calculated and the reference values. It is concluded that the design methodology which consists of the reverse depletion, the power sensitivity coefficient concept, and the linear programming technique can be used to find the optimal turnable poison distribution.

  • PDF

Femoral Nerve Injury after Rectus Abdominis Muscle Slap Harvesting: A Case Report (복직근 유리피판 거상 후 합병된 대퇴 신경손상 1례)

  • Kim, Jino;Lew, Dae Hyun;Tark, Kwan Chul
    • Archives of Plastic Surgery
    • /
    • v.33 no.4
    • /
    • pp.510-513
    • /
    • 2006
  • Purpose: The Rectus abdominis muscle free flap is utilized in various reconstruction surgeries due to easiness in harvesting, consistency of vascular pedicle and reduced donor site morbidity. But rarely, femoral nerve injury during rectus abdominis harvesting can be resulted. We report a case of femoral nerve injury after rectus muscle harvesting and discuss the injury mechanism with the follow-up process of this injury. Methods: To reconstruct the defect of middle cranial base after wide excision of cystic adenocarcinoma of the external ear, rectus muscle free flap was havested in usual manner. To achieve a long vessel, inferior epigastric artery was dissected to the dividing portion of femoral artery and cut. Results: One week after the surgery, the patient noted sensory decrease in the lower leg, weakness in muscle strength, and disabilities in extension of the knee joint resulting in immobilization. EMG and NCV results showed no response on stimulation of the femoral nerve of the left leg, due to the defects in femoral nerve superior to the inguinal ligament. With routine neurologic evaluations and physical therapy, on the 75th day after the operation, the patient showed improvement in pain, sensation and muscle strength, and was able to move with walking frame. In 6 months after the operation, recovery of the muscle strength of the knee joint was observed with normal flexion and extension movements. Conclusion: Rarely, during dissection of the inferior epigastric artery, injuries to the femoral nerve can be resulted, probably due to excessive traction or pressure from the blade of the traction device. Therefore, femoral nerve injury can be prevented by avoiding excessive traction during surgery.

Performance Characteristics of Flooded Type Evaporator for Seawater Cooling System with Heat Source Temperature of Mid-year (중간기 열원수 온도에 따른 만액식 해수냉각시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Lee, Jeong-Mok;Kang, In-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.64-69
    • /
    • 2017
  • The purpose of this study is to investigate the performance characteristics of seawater cooling system for a fishing vessel. The circulation amount of refrigerant, condensation capacity, evaporation capacity, compression work and coefficient of performance(COP) were analyzed as the heat source temperature changed. The experimental setup consisted of an open-type compressor, a shell&tube type condenser, an evaporator and an expansion valve. The heat source was controlled by a constant temperature chamber. The main results of this study are summarized as follows. The condensation capacity increased with increasing heat source temperature, and it was confirmed that the effect of circulating amount of refrigerant was dominant. The amount of heat for vaporization was almost constant even though the temperature of the heat source increased. On the other hand, the compression power was increased. This is because the compression ratio increases as the condensation pressure, the enthalpy difference between inlet and outlet, the amount of circulating refrigerant increases. The performance coefficient of this system showed a tendency decreasing with increasing heat source temperature. Therefore, the basic data of the seawater cooling system for the maintenance of the catch line of the shore fishing boats was acquired through this study, and it is considered that it will be sufficient for the actual design.

Ultrasonic Nonlinearity Measurement in Heat Treated SA508 Alloy: Influences of Grains and Precipitates (열처리된 SA508 합금에서의 초음파 비선형성 측정: 결정립과 석출물 영향)

  • Baek, Seung-Hyun;Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.451-457
    • /
    • 2010
  • In the present study, the influences of grains and precipitates of microstructural evolution on the ultrasonic nonlinearity have been experimentally investigated. The prior-austenite grain and precipitate size are controlled by the variation in austenitizing and tempering conditions in reactor pressure vessel materials of nuclear power plant, SA508 Gr.3 low alloys. The ultrasonic nonlinearity was found to have strong correlations with grains and precipitates since the ultrasonic nonlinear parameter $\beta$ shows decrease trend with coarsening of grains and precipitates. Although the prior-austenite grain size increased, the $\beta$ changed little due to the effects of subgrains, packets and laths. For the preciptate effects, the $\beta$ decreased sharply due to decrease in $Mo_2C$ causing the coherency stain in addition to the precipitate size. The results in this study may provide a potential for characterizing the microstructural evolution, grains and precipitates, by measuring the ultrasonic nonlinearity.

Comparison of TOFD and Radiographic Testing for a Mock-up Specimen (모의 시험편에 대한 TOFD와 방사선투과시험의 비교)

  • Kim, Chung-Jick;Jeon, Jong-Gun;Kim, Jin-Taek
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • In order to detect the internal defects which occur in welding parts of pressure vessel and structures, radiographic testing and ultrasonic testing is applied. However, because of the risks of radiation exposure and film processing, radiographic testing takes a relatively long time to verify the test results and it has affected in the production process. Typically, the manual ultrasonic testing is not easy to reproduce the result and it is highly dependent on the tester's skills. The TOFD technique, one of the automatic ultrasonic testings is spreading alternatively. This research describes the comparing test results by applying radiographic testing and TOFD technique to a mock-up specimen incruding the flaws. The TOFD technique will contribute to improve the objective reliability of the ultrasonic technique.

A Study on the Heating of Lipiodol during Lymphangiography (림프관 조영술 시 리피오돌의 가온에 관한 고찰)

  • Kang, Rae-Wook;Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.597-602
    • /
    • 2020
  • The study was conducted to improve the efficiency of the test and to reduce the exposure dose of patients and operators by analyzing the difference in the moving speed of Lipiodol according to the temperature during lymphography. The device for injecting Lipiodol at a constant pressure was self-made, and after inserting Lipiodol into the Connecting Tube, the moving speed of the contrast agent was photographed at temperatures of 26℃, 36℃, and 46℃ using a heat transfer device. Lipiodol movement time from the Support Catheter to 20cm was measured and analyzed, and statistical significance was confirmed. In the 46℃ environment, the average moving time was 11 seconds, at 36℃ the average was 13 seconds, and at 26℃ the average was 17 seconds. Lipiodol showed a significant difference in moving time with increasing temperature (p<.001), and it was confirmed that the higher the temperature, the faster the moving speed. In the case of lymphangiography, when heated to a certain temperature (46 degrees) rather than injecting Lipiodol at room temperature, the injection speed can be increased and the speed of movement in the lymphatic vessel can be improved.

Prediction of boil-off gas and boil-off rate in cargo tank of NGH carrier

  • Kang, Ho-Keunn;Kim, Dongeum;Kim, You-Taek;Park, Jung-Dae;Kang, Shin-Baek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1002-1010
    • /
    • 2015
  • Natural gas hydrates are newly emerging as an environment-friendly source of energy to substitute for fossil fuels in the 21stcentury.NGHs are reported to holds much amounts of natural gas (up to 182 standard volumes of gas per volume of hydrate); they are easy to store and safe to carry at about minus 20 degree Celsius under atmospheric pressure because of the self-preservation phenomenon of gas hydrates. The transporting method by gas-ice-hydrate ship carriers has been introduced and developed by a variety of industry and research institutions. Our team has been conducted to develop NGH total systems, including a breakthrough NGH carrier for sea transportation, since 2011. The NGH pellet carrier does not require a separate cooling system for cargo, and the initial temperature is maintained through insulation of the cargo tanks throughout the transport to the final destination. The heat conducted from the exterior and passing through the insulation material of the hull should be cut off as much as possible, but heat inflow inside the cargo tank from an external source is inevitable during transport. In this study, the heat transfer in a cargo tank of a 115K NGH carrier was analyzed through simulation with a commercial CFD code to estimate the boil-off gas/boil-off rate on the developed carrier and understand major hazards that could significantly impact the safety of the vessel.

Recent advances in natural gas hydrate carriers for gas transportation - A review and conceptual design

  • Kim, Kipyoung;Kim, Youtaek;Kang, Hokeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.589-601
    • /
    • 2014
  • Natural gas hydrate (NGH) is emerging as a new eco-friendly source of energy to replace fossil fuels in the 21st century. It is well known that the Natural Gas Hydrate contains large amount of natural gas about 170 times as much as its volume and it is easy to be stored and transported safely at about $-20^{\circ}C$ under atmospheric pressure due to so called "self-preservation effect". The option of gas transport by gas hydrate pellets carrier has been investigated and developed in various industry and academy. The natural gas hydrate pellet carrier is on major link in a potential gas hydrate process chain, starting with the extraction of natural gas from the reservoir, followed by the production of hydrate pellets and the transportation to an onshore terminal for further processing or marketing. In recent years, Korean project team supported by Korean Government has been working on the development of NGH total systems including novel NGH carrier since 2011. In order to increase the knowledge on the NGH pellet carrier developed and to understand the major hazards that could have significant impact on the safety of the vessel, this paper presents and evaluates the pros and cons of cargo holds, loading and unloading systems through the analysis of current patent technology. Based on the proven and well-known technologies as well as potential measures to mitigate sintering and minimize mechanical stress on the hydrate pellet in the self-preservation state, this study presents the conceptual and basic design for NGH carrier.

The Study on a Flow-rate Calculation Method by the Pump Power in the Axial Flow Pumps (축류형 펌프에서 펌프전력을 이용한 유량산정 방범에 관한 연구)

  • Lee, Jun;Seo, Jae-Kwang;Park, Chun-Tae;Kim, Young-In;Yoon, Ju-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.227-231
    • /
    • 2004
  • It is the common features of the integral reactors that the main components of the RCS are installed within the reactor vessel, and so there are no any flow pipes connecting the steam generator or the pump whose type is the axial flow. Due to no any flow pipes, it is impossible to measure the differential pressure at the RCS of the integral reactors, and it also makes impossible measure the flow-rate of the reactor coolant. As a alternative method, the method by the measurement of the pump power of the axial flow pump has been introduced in this study. Up to now, we did not found out a precedent which the pump power is used for the flow-rate calculation at normal operation of the commercial nuclear power plants. The objective of the study is to embody the flow-rate calculation method by the measurement of the pump power in an integral reactor. As a result of the study, we could theoretically reason that the capacity-head curve and capacity-shaft power curve around the rated capacity with the high specific-speeded axial flow pumps have each diagonally steep incline but show the similar shape. Also, we could confirm the above theoretical reasoning from the measured result of the pump motor inputs. So, it has been concluded that it is possible to calculate the flow-rate by the measurement of the pump motor inputs.

  • PDF