• Title/Summary/Keyword: vertical electric field

Search Result 135, Processing Time 0.024 seconds

An Analysis of Electric-field Density into Mountain Area Using DTED (디지털 지도를 이용한 산악지형의 전계강도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Park, Young-Chul;Kim, Min-Nyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.852-857
    • /
    • 2006
  • This paper presents a precision method to calculate the electric field density of mountain area using digital terrain elevation data(DTED). Generally we calculate the electric field density of a point adding a direct field density and horizontal reflection field density between two points. In this paper, we consider a vertical reflection field density from vertical surface near the wave propagation line between transmitter and receiver. The vertical reflection electric field have different propagation path and polarization from a horizontal reflection field. And the total electric field density adding horizontal field density and vertical reflection value is more accurate than a direct path electrical field density or direct field density adding a horizontal reflection field density.

  • PDF

Transflective Fringe-Field Switching Liquid Crystal Device Driven by Vertical- and Fringe-field (수직전기장과 프린지 필드에 의해 구동되는 반투과형 FFS 액정소자)

  • Lim, Young-Jin;Park, Sang-Hyun;Choi, Min-Oh;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.279-280
    • /
    • 2005
  • We have designed a single gap transflective liquid crystal display (LCD) driven by a fringe electric field and vertical field. The conventional FFS mode does not have an electrode on top substrate, it shows not only slow response time due to weak electric field but also slow discharging problem when electrostatic field is generated after fabricating the cell. To solve these problems, transflective LCD with ITO coated upper substrate was suggested but the transmittance was reduced significantly due to effects from vertical field. Hence, in the present paper, new transflective LCD with ITO coating only in the reflective region was characterized.

  • PDF

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

The Vertical Field Analysis within the Strong Inversion of MOS FET using the Multi-box Segmentation Technique (다중BOX분할기법을 이용한 MOS FET의 강반전층내에서의 수직전계해석)

  • 노영준;김철성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1469-1476
    • /
    • 2000
  • We have to consider the drain current as consisting of two components the vertical electric field and the longitudinal electric field because the drain current is almost totally due to the presence of drift in strong inversion of n-MOS FET. Especially the mobility of electrons in the inversion layer is smaller than the bulk mobility because the vertical electric field component that is generated by the effect of the gate voltage is perpendicular to the direction of normal current flow. By the multi-box segmentation technical method that are proposed in this paper we calculated the inversion layer depth and analyzed the vertical electric field component which has an large influence on mobility model.

  • PDF

Analysis on Electric Field Based on Three Dimensional Atmospheric Electric Field Apparatus

  • Xing, Hong-yan;He, Gui-xian;Ji, Xin-yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1697-1704
    • /
    • 2018
  • As a key component of lighting location system (LLS) for lightning warning, the atmospheric electric field measuring is required to have high accuracy. The Conventional methods of the existent electric field measurement meter can only detect the vertical component of the atmospheric electric field, which cannot acquire the realistic electric field in the thunderstorm. This paper proposed a three dimensional (3D) electric field system for atmospheric electric field measurement, which is capable of three orthogonal directions in X, Y, Z, measuring. By analyzing the relationship between the electric field and the relative permittivity of ground surface, the permittivity is calculated, and an efficiency 3D measurement model is derived. On this basis, a three-dimensional electric field sensor and a permittivity sensor are adopted to detect the spatial electric field. Moreover, the elevation and azimuth of the detected target are calculated, which reveal the location information of the target. Experimental results show that the proposed 3D electric field meter has satisfactory sensitivity to the three components of electric field. Additionally, several observation results in the fair and thunderstorm weather have been presented.

Characteristic Analysis on Radio Propagation Path Loss Characteristics of Vertical Electric Dipole in Time Domain (시간영역에서 수직 다이폴의 전파경로손실 특성 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1558-1563
    • /
    • 2013
  • In this paper, we analyze the radio propagation path loss characteristics for the vertical electric dipole radiation over the perfect electric conductor(PEC) ground plane. Most research have been performed about the electromagnetic analysis of vertical electric dipole in free space for time domain or frequency domain. But this paper present the radio propagation path loss over PEC ground plane in time domain under the assumption of the vertical electric dipole as a base station. From the simulated results, the ground plane effect can change the location of near field from transmitting antenna and the transient responses at mobile are calculated. The results of this paper can be applied to surface radar or signal processing applications.

Effect of Electric field on an Injection Velocity in a Vertically Aligned Nematic Liquid Crystal (수직배향 네마틱 액정셀에서의 주입속도에 미치는 전기장 효과)

  • Jeon, Yeon-Mun;Kim, Sang-Gyun;Kim, Youn-Sik;An, Myeong-Hwan;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.695-699
    • /
    • 2006
  • Injection time of liquid crystal (LC) by capillary action in a vertically aligned (VA) nematic LC cell takes longer than that in a homogeneously aligned (HA) LC cell because Miesowicz viscosity in the former is bigger than that in the latter. To reduce liquid crystal injection time in the VA cell, we applied vertical electric field while injecting so that the orientation of LC molecules is changed from vertical alignment to homogeneous alignment. Consequently, the injection speed is improved by 25 % when compared with the cell without an applied field.

Characteristic for the Near Field of Rectangle Loop Antenna using Optical Electric-Field Sensor (광전계 센서를 이용한 구형 Loop Antenna의 근접전계 특성)

  • 이주현;도쿠다마사미추;하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.217-225
    • /
    • 2003
  • In this paper, in order to investigate the near field distribution characteristic of the Loop Antenna we simulated and measured the near field of a Loop Antenna using optical electric-field sensor in a large Chamber(8.5 m x 7 m x 7 m). The simulation methods were used MoM for frequency domain and FDTD for time domain. From the analysis results, it can be seen that the simulation and measurement results are very aggregated, and the optical electric-field sensor is a certificate of validity. In frequency domain, in case of the optical sensor with vertical polarization is located above the near vertical line of the Loop Antenna the signal strength level is more 15 ㏈ than with horizontal polarization. But in case of the optical sensor located above horizontal line of the Loop Antenna, signal strength level is not different. And, in the time domain, although input signal is positive, in the case of the optical sensor with vertical polarization is located above horizontal line of the Loop Antenna, it can be seen that the received pulse shape is negative.

Effective Sensing Volume of Terahertz Metamaterial with Various Gap Widths

  • Park, Sae June;Yoon, Sae A Na;Ahn, Yeong Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.628-632
    • /
    • 2016
  • We studied experimentally and theoretically the vertical range of the confined electric field in the gap area of metamaterials, which was analyzed for various gap widths using terahertz time-domain spectroscopy. We measured the resonant frequency as a function of the thickness of poly(methyl methacrylate) in the range 0 to 3.2 μm to quantify the effective detection volumes. We found that the effective vertical range of the metamaterial is determined by the size of the gap width. The vertical range was found to decrease as the gap width of the metamaterial decreases, whereas the sensitivity is enhanced as the gap width decreases due to the highly concentrated electric field. Our experimental findings are in good agreement with the finite-difference time-domain simulation results. Finally, a numerical expression was obtained for the vertical range as a function of the gap width. This expression is expected to be very useful for optimizing the sensing efficiency.

풀러린을 이용한 전자종이용 소자 최적구조 연구

  • Kim, Mi-Gyeong;Kim, Mi-Yeong;Kim, Seong-Min;Lee, Myeong-Hun;Lee, Seung-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.189-189
    • /
    • 2009
  • This work was focused on the dielectrophoretic force of fullerenes dispersed in liquid crystal host medium, which are investigated in the homogeneously aligned liquid crystal (NLC) cells driven by external electric field. A fullerene of 10 wt% was doped into the LC medium and its electric field induced motion was controlled by both in-plane and vertical electric field. When the electric field was applied, the fullerene start to move in direction of applied electric field. The dark, grey and white states in the proposed device can be obtained by suitable combination of the polarity of applied electric field. The w and l are the width and distance between the electrodes. The reflectance at different l was measured and was found to be increased with increasing l. The dynamical motions of fullerene particles in LC medium suggest that fullerene can be designed for electronic-paper like displays.

  • PDF