• Title/Summary/Keyword: vertical eccentricity

Search Result 57, Processing Time 0.019 seconds

Disturbance Analysis in an Optical Disk Drive Using Model Based Disturbance Observer and Waterfall Technique (모델 기반 외란 관측기와 Waterfall 해석을 이용한 광 디스크 외란 분석)

  • Choi, Jin-Young;Lee, Kwang-Hyun;Jun, Hong-Gul;Lee, Moon-Noh;Yang, Hyun Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.40-49
    • /
    • 2006
  • A novel disturbance measurement method, model based disturbance observer (MBDO) for optical disk drives (ODDs), is proposed and the disturbance analysis using the proposed method is performed under various conditions. In ODDs, the quantitative and qualitative analysis for the generated disturbance during normal operation is very important to successful servo loop design. However, the disturbance measurement is difficult, and high precision measurement is necessary. Furthermore, the conventional disturbance measurement method using a LDV (laser Doppler vibrometer) has many difficulties in eccentricity direction due to the vertical movement of an optical disk. To solve this problem, the MBDO is proposed. First, the relationship between the servo loop for ODDs and the generated disturbance are briefly reviewed. Second, the principle of the MBDO is introduced, and the disturbance measurement results, which are measured by the MBDO and a LDV, are compared. In these experiments, test DVD-ROM disks are used to generate quantitative/qualitative disturbance. Then, the disturbance analysis under various conditions is performed using waterfall technique. This technique clearly shows the disturbance trend from the inner part of an optical disk to the outer part of it. Finally, the various disturbances measurement results are summarized and some remarks for it are commented.

Fundamental Study on Rock Cutting by an Actuated Undercutting Disc (구동형 언더커팅 디스크에 의한 암석절삭에 관한 기초연구)

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.591-602
    • /
    • 2020
  • Several alternative rock-cutting concepts, which are modified from the conventional ones, have been developed lately. Of the concepts, undercutting is one of the latest technologies. In this study, as a fundamental study on the undercutting technique, the rock-cutting mechanism and important parameters of the undercutting were introduced. This study built up cutting test system for evaluating the cutting performance of an actuated undercutting disc cutter (ADC), and carried out a series of cutting tests under different cutting parameters of ADC. The characteristics of cutter forces obtained from ADC rock-cutting tests were analyzed. The both average and peak values of the three directional cutter forces were linearly increased with the increases of linear velocity, penetration depth in vertical direction and eccentricity of ADC.

Using an appropriate rotation-based criterion to account for torsional irregularity in reinforced concrete buildings

  • Akshara S P;M Abdul Akbar;T M Madhavan Pillai;Rakesh Pasunuti;Renil Sabhadiya
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.349-361
    • /
    • 2024
  • Excessive torsional behaviour is one of the major reasons for failure of buildings, as inferred from past earthquakes. Numerous seismic codes across the world specify a displacement-based or drift-based criterion for classifying buildings as torsionally irregular. In recent years, quite a few researchers have pointed out some of the inherent deficiencies associated with the current codal guidelines on torsional irregularity. This short communication paper aims to envisage the need for a revision of the displacement-based guidelines on torsional irregularity, and further highlight the appropriateness of a rotation-based criterion. A set of 6 reinforced concrete building models with asymmetric shear walls are analysed using ETABS v18.0.2, by varying the number of stories from 1 to 9, and the torsional irregularity coefficient of various stories is calculated using the displacement-based formula. Since rotation about the vertical axis is a direct indication of the twist experienced by a building, the calculated torsional irregularity coefficients of all stories are compared with the corresponding floor rotations. The conflicting results obtained for the torsional irregularity coefficients are projected through five categories, namely mismatch with floor rotations, inconsistency in trend, lack of clarity in incorporation of negative values, sensitivity to low values of displacement and error conceived in the mathematical formulation. The findings indicate that the irregularity coefficient does not accurately represent the torsional behaviour of buildings in a realistic sense. The Indian seismic code-based values of 1.2 and 1.4, which are used to characterize buildings as torsionally irregular are observed to be highly sensitive to the numerical values of displacements, rather than the actual degree of rotation. The study thus emphasizes the revision of current guidelines based on a more relevant rotation-based or eccentricity-based approach.

A Study on Repair/ Retrofit for Deteriorations of Steel Bridge -Behavior Characteristics of Welded Joint Part of Flange and Repair/Retrofit of Fatigue Crack in Railway Steel Bridge- (강철도교 열화현상에 관한 보수/보강 연구 -강철도교의 플랜지 용접이음부의 거동 특성 및 피로균열 보수보강-)

  • Kyung, Kab Soo;Lee, Sung Jin;Park, Jin Eun;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.613-625
    • /
    • 2012
  • Since railway bridge frequently have a chance of passing train load close to design load, it is necessary to reflect sufficiently fatigue property in early design phase for many structural details. Nevertheless fatigue cracks are reported partly in deck plate girder of railway steel bridge because of the weight and arrangement of axial load acting on railway bridge, the application of improper structural details for fatigue problem etc.. One of main cause for fatigue crack at the welded part of upper flange and web is caused by the eccentricity action of train load due to the difference of center to center spacing between the main girder supporting sleeper and the rail acting train load. For the existing deck plate girder of railway steel bridge, in this study, field survey, field measurement and a series of structural analysis were performed. In addition, the characteristics of structural behavior, the causes and repair/ retrofit of fatigue crack were examined in the target bridge.

Study on Physiological Summation in Peripheral Retina for Eccentric Viewing Training (중심외주시 훈련용 주변부 망막의 생리적 가중에 관한 연구)

  • Seo, Jae-Myoung;Lee, Ki-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.489-493
    • /
    • 2013
  • Purpose: This study was to investigate peripheral vision and provide people with macular degeneration with a guideline for eccentric viewing training. Methods: 30 adult subjects with normal vision took part in this study. The lateral area of $20^{\circ}$ eccentricity from the fovea of right eye was only used to measure the physiological summation. The target was sinusoidal vertical gratings within a circular aperture. The critical points in spatial and temporal summation was found to compare each other for 0.7 cpd and 3.0 cpd, respectively. Results: Critical duration and contrast sensitivity for 0.7 cpd were 540 ms and 1.1, and 315 ms and 0.98 for 3.0 cpd respectively. The critical degrees and contrast sensitivity for 0.7 cpd were $11.3^{\circ}$ and 2.8, and $5^{\circ}$ and 2.63 for 3.0 cpd respectively. Conclusions: The critical point in peripheral vision reaches relatively faster than the one in central vision. It is recommended to train the peripheral retina under the lower spatial frequency more frequently for a short time than constantly for a long time.

Construction Methodology for Chum-Sung-Dae Validation through the Present Configuration (첨성대 건립에 대한 시공방법론 첨성대의 얼개를 통한 논증)

  • Kim, Jang Hoon;Park, Sang Hun
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.2
    • /
    • pp.40-61
    • /
    • 2009
  • A new construction methodology has been proposed on a scientific basis to reason a rational explanation for the structure and the present configuration of Chum-Sung-Dae. This is because there is no way to otherwise explain the gap between our expectation that the people in Shilla are assumed to be and the problems, such as the use of a temporary supporting structure including falsework, the use of a conveying device for stonework and the practice of soil fill, raised when the construction method in nowadays is applied to the structure. Furthermore, it is because the questions, such as the difference of an azimuth angle between the southward opening and the square podium, the skewed circular plan in layers of the body, misalignment between neighboring layers of the body, disagreement between the inclination due to slight sidesway and the eccentricity in each layer of the circular body, perfectly aligned vertical and horizontal joints and the existence of soil fill, raised from the present configuration of Chum-Sung-Dae, also require a reasonable explanation based on scientific evidences, if any. Therefore, the proposed new construction methodology, in which the soil hill outside as well as the soil fill inside the Chum-Sung-Dae may have been utilized as a temporary scaffolding system for construction, is the highly probable one that the builders of Chum-Sung-Dae might have inevitably employed. The existence of great tombs, scattered in Hwang-Nam-Dong close to Chum-Sung-Dae, implies that the people of Shilla might have accepted the proposed new construction methodology as a natural one.

Generalization of an Evaluation Formula for Bearing Pressures on the Rubble Mound of Gravity-Based Harbor Structures (중력식 항만구조물의 사석마운드 지반반력 평가식의 일반화)

  • Woo-Sun Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.128-137
    • /
    • 2023
  • In this study, the bearing pressure on the rubble mound of a gravity-based harbor structure with an arbitrarily shaped bottom was targeted. Assuming that the bottom of the structure is a rigid body, the rubble mound was modeled as a linear spring uniformly distributed on the bottom that resists compression only, and the bearing pressure evaluation formula was derived. It was confirmed that there were no errors in the derivation process by showing that when the bottom was square, the derived equation was converted to the equation used in the design. In addition, the validity of the derived equation was proven by examining the behavior and convergence value of the bearing pressure when an arbitrarily shaped bottom converges into a square one. In order to examine the adequacy of the method used in the current design, the end bearing pressure for the pre-designed breakwater cross-section was calculated and compared with the values in the design document. As a result, it was shown that the method used for design was not appropriate as it gave unsafe results. In particular, the difference was larger when the eccentricity of the vertical load was large, such as in the case of extreme design conditions.