• Title/Summary/Keyword: vertical earth pressure

Search Result 186, Processing Time 0.024 seconds

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

Soil Improvement using Vertical Natural Fiber Drains (연직천연섬유배수재를 이용한 연약지반 개량)

  • Kim, Ju-Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.37-45
    • /
    • 2008
  • A pilot test using environmentally friendly drains, was carried out to evaluate their applicability potential in the field. The pilot test site was divided into 5 different areas, with several combinations of vertical and horizontal drains installed for evaluation. Conventional natural fiber drains (FDB), new developed straw drain board (SDB) and plastic drain board (PDB) were used as vertical drains, while sand and fiber mats were used as horizontal drains. Surface settlement rates and excess pore pressure generation/dissipation tendency of PDB and FDB are almost identical except those of SDB. Cone tip resistance obtained from cone penetration test measured at the end of 1st consolidation stage for upper soft layer definitely increased irrespective of types of vertical drains. The monitoring and site investigation test data obtained at the pilot test site prove the vertical natural fiber drains can be used as substitutes of conventional plastic and sand material.

  • PDF

Characteristic of stress and strain of soft ground applied individual vacuum pressure (개별진공압이 적용된 연약지반의 응력과 변형 특성)

  • Ahn, Dong-Wook;Han, Sang-Jae;Kim, Byung-Il;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.467-472
    • /
    • 2010
  • Individual vacuum pressure method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or pre-loading method. In this study, given the inner displacement of the ground where the individual vacuum pressure is applied, this dissertation aimed to reproduce the state of stress in the ground that is subject to the constraints created by the depth of improvement area. Modified Cam Clay theory which made it possible to take into account the isotropic displacement of the ground was applied to the NAP-IVP used simulation; the conception of equivalent permeability proposed by Hird was also applied so that the 3-dimensional real construction effect of drain materials could be reflected in the analysis.

  • PDF

Analysis of the Behavior of Reinforced Earth Retaining Walls Constructed on Soft Ground Using the Replacement Method (치환공법을 적용한 연약지반에 시공된 보강토옹벽의 거동해석)

  • Ki, Wan-Seo;Joo, Seung-Wan;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.601-613
    • /
    • 2007
  • It is reported that factors affecting the behavior of reinforced earth retaining walls built on soft ground are not only basic physical properties but also the increase of load by the reinforced earth retaining walls, consolidation period, pore water pressure, etc. This study analyzed the behavior of reinforced earth retaining walls and soft ground using SAGE CRISP, a ground analysis program. First, we examined the effect of the replacement method, which was to prevent the excessive displacement of reinforced earth retaining walls, in improving the behavior of the walls. Second, we compared and analyzed how the behavior of ground is affected by the vertical interval of stiffeners on the back of reinforced earth retaining walls after the application of the replacement method. Lastly, we proposed the optimal replacement width and depth in the application of the replacement method. The results of this study proved that the replacement method is considerably effective in improving the behavior of reinforced earth retaining walls. In addition, the vertical interval of stiffeners on the back of reinforced earth retaining walls appeared effective in improving the horizontal displacement of the top of retaining walls but not much effective in improving the vertical displacement of the back of retaining walls. In addition, improvement in horizontal-vertical displacement resulting from the increase in replacement width was not significant and this suggests that the increase of replacement width is not necessary. With regard to an adequate replacement depth, we proposed the ratio of replacement depth to the height of retaining walls(D/H) according to the ratio of the thickness of the soft layer to the height of retaining walls(H/T).

Experimental study on the ground movement due to consecutive construction of retaining wall and underground space in cohesionless soil (사질토 지반에서 흙막이벽체-지하공간 연속 굴착에 따른 지반거동에 대한 실험적 연구)

  • Park, Jong-Deok;Yu, Jeong-Seon;Kim, Do-Youp;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.267-281
    • /
    • 2015
  • The ground movement and changes in earth pressure due to the consecutive construction of retaining wall and underground space were studied experimentally. A soil tank having 160 cm in length and 120 cm in height, was manufactured to simulate the vertical excavation like retaining wall by using 10 separated right side walls and underground space excavation like tunnel by using 5 separated bottom walls. The variation of earth pressure and surface settlement were measured according to the excavation stages. The results showed that the decrease of earth pressure due to the wall movement can cause the increase of earth pressure of the neighboring walls proving the arching effect. Experiments simulating continuous construction sequence also identified arching effect, however only 50% of earth pressure was restored on the 10th right side wall due to the movement of 1st bottom side wall unusually.

Influence of eccentric load and lateral earth pressure on the tunnel behavior (편토압 및 측압이 터널거동에 미치는 영향)

  • Ahn, Hyun-Ho;Suh, Byung-Wook;Kim, Dong-Hyun;Min, Dong-Ho;Lee, Sun-Bok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • Scaled model tests were performed to explore the influence of eccentric load and lateral earth pressure on tunnel behavior and their results were verified through numerical analyses. As a method for reducing the eccentric load acting on tunnel, an eccentric supporting system (ESS) was proposed and its applicability was investigated. Experimental results showed that displacement decreased overall and the load inducing initial cracks increased as the eccentric supporting system was applied. The maximum eccentric vertical load which impacted the stability of tunnel was also increased. The test results on the influence of lateral earth pressure on tunnel behavior showed that the general aspect of displacement and crack growth changed significantly depending on the coefficient of lateral earth pressure. In addition, the weak zone In view of stability varied as well.

  • PDF

A rational estimating method of the earth pressure on a shaft wall considering the shape ratio (벽체형상비의 영향을 합리적으로 고려한 원형수직구 벽체에 작용하는 토압산정방법)

  • Shin, Young-Wan;SaGong, Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.143-155
    • /
    • 2007
  • The earth pressure acting on a circular shaft wall is smaller than that acting on the wall in plane strain condition due to the three dimensional axi-symmetric arching effect. Accurate estimation of the earth pressure is required for the design of the shaft wall. In this study, the stress model considering the decrease of earth pressure due to the horizontal and vertical arching effect and the influence of shape ratio (shaft height/radius) is proposed. In addition, model test on the sandy soil is conducted and a comparison is made between the stress model and the test results. The comparison shows that the proposed stress model is in agreement with test results; decrease of shape ratio (increase of radius) leads to stress state equal to the plane strain condition and approximate stress distribution is found between stress model and model test results.

  • PDF

Effect of seismic acceleration directions on dynamic earth pressures in retaining structures

  • Nian, Ting-Kai;Liu, Bo;Han, Jie;Huang, Run-Qiu
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.263-277
    • /
    • 2014
  • In the conventional design of retaining structures in a seismic zone, seismic inertia forces are commonly assumed to act upwards and towards the wall facing to cause a maximum active thrust or act upwards and towards the backfill to cause a minimum passive resistance. However, under certain circumstances this design approach might underestimate the dynamic active thrust or overestimate the dynamic passive resistance acting on a rigid retaining structure. In this study, a new analytical method for dynamic active and passive forces in c-${\phi}$ soils with an infinite slope was proposed based on the Rankine earth pressure theory and the Mohr-Coulomb yield criterion, to investigate the influence of seismic inertia force directions on the total active and passive forces. Four combinations of seismic acceleration with both vertical (upwards or downwards) and horizontal (towards the wall or backfill) directions, were considered. A series of dimensionless dynamic active and passive force charts were developed to evaluate the key influence factors, such as backfill inclination ${\beta}$, dimensionless cohesion $c/{\gamma}H$, friction angle ${\phi}$, horizontal and vertical seismic coefficients, $k _h$ and $k_v$. A comparative study shows that a combination of downward and towards-the-wall seismic inertia forces causes a maximum active thrust while a combination of upward and towards-the-wall seismic inertia forces causes a minimum passive resistance. This finding is recommended for use in the design of retaining structures in a seismic zone.

Load Transfer to the Adjacent Ground Induced by the 3-Dimensional Active Displacement (3차원 주동변위에 따른 인접지반으로의 하중전이)

  • Park, Byung Suk;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.49-60
    • /
    • 2015
  • Since previous studies on the 3-dimensional earth pressure have been conducted focusing on the stability of wall, it is very difficult to find a study on the load transfer to the adjacent ground induced by the 3-dimensional active displacement. Therefore, in this study, we tried to find out the load transfer to the adjacent ground induced by the 3-dimensional active displacement depending on the size of rectangular wall which was defined by the aspect ratio, that is, the ratio of the height to the width of the wall. 3-dimensional model tests were performed in order to measure the distribution and the magnitude of load transfer to surrounding grounds. The transferred load was 17.9~30.6% less than the difference between the 3-dimensional active earth pressure and earth pressure at rest. The transferred load of both vertical and horizontal was maximum at the boundary of the active wall. The load transfer range depended on the normalized height of the active wall, and it was 0.67~1.29w in horizontal direction and 1.0~3.0h in vertical direction. The transferred load in horizontal was maximum at the height of the wall. As the aspect ratio increases the location of the maximum transferred load points becomes higher. The ratio of the transferred load area of 56~79% at 0.25w in horizontal direction and 50~58% at 1.0~1.5 in vertical direction. Diagrams showing the distribution and the magnitude of the transferred load depending on the aspect ratio were suggested.

Vertical Earth Pressure Distribution on Cantilever Retaining Wall (역 T 형 옹벽에 작용하는 연직토압분포)

  • Yoo, Nam-Jae;Lee, Myeung-Woog
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.181-189
    • /
    • 1996
  • Centrifuge model tests of cantilever retaining wall were performed to investigate the vertical stress distribution due to selfweight of backfill material. Model tests were carried out to find the effect of arching action on vertical stress distribution by changing the roughness of rigid boundary slope and the distance between retaining wall and boudary slope. A reduced scale model of cantilever retaining wall was made with concrete and Jumunjin Standary Sand with 80 % of relative density was used as foundation and backfill material. Centrifuge tests were performed by increasing g-level up to 40 g with measuring vertical stress induced by selfweight of backfill material. Test results on vertical stress distribution were analyzed and compared with results of Silo theory.

  • PDF